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Chapter 1

Review of Matrix Algebra

The study of multivariate methods is greatly facilitated by the use of matrix algebra. This
chapter presents a review of basic concepts of matrix algebra which are essential to both
geometrical interpretations and algebraic explanations of subsequent multivariate statistical
techniques.

1.1 Definition of Matrix and Vector

A rectangular array of numbers with, for instance, n rows and p columns is called a matrix
of dimension n× p. It is written as:

X =


x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp


A vector is a matrix of n× 1 real numbers x1, x2, . . . , xn and it is written as:

x =


x1
x2
...
xn

 or x′ = (x1, x2, · · · , xn) or x = (x1, x2, · · · , xn)′.

A vector has both magnitude (length) and direction. The length of a vector, x′ = (x1, x2, · · · , xn),
is defined by

Lx =
√
x21 + x22 + · · ·+ x2n =

√
x′x.

The length of a vector can be expanded and contracted by multiplying with a constant a.
That is,

ax =


ax1
ax2

...
axn

 .
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Such multiplication of a vector x by a scalar a changes the length as

Lax =
√
a2x21 + a2x22 + · · ·+ a2x2n = |a|

√
x′x.

When |a| > 1, vector x is expanded. When |a| < 1, vector x is contracted. When |a| = 1,
there is no change. If a < 0, the direction of vector x is changed.

Choosing a = L−1x , we obtain the unit vector Lax, which has length 1 and lies in the direction
of x.

Example 1.1. If n = 2, consider the vector x =

[
x1
x2

]
. The length of x is Lx =

√
x21 + x22.

Geometrically, the length of a vector in two dimensions can be viewed as the hypotenuse of
a right triangle.

1.1.1 Matrix Characteristics

• Rank: The rank of a matrix A is the maximum number of linearly independent rows
(columns).

– A set of k vectors x1, x2, · · · , xk is said to be linearly independent if a1x1 +

a2x3 + · · · + akxk =
k∑
i=1

aixi = 0 only if a1 = a2 = · · · = ak = 0. That is, if

every ai is zero, the x1, x2, · · · , xk (columns) are linearly independent. Linear
independence implies every vector can not be written as a linear combination of
the other vectors. Vectors of the same dimension that are not linearly independent
are said to be linearly dependent which means at least one vector can be written
as a linear combination of the other vectors.

Example 1.2. x1 =

[
3
4

]
, x2 =

[
2
1

]
a1x1 + a2x2 = 0 ⇒

3a1 + 2a2 = 0

4a1 + a2 = 0

holds only if a1 = a2 = 0. This confirms that x1 and x2 are linearly independent.

In other words, the columns of matrix A =

[
3 2
4 1

]
are linearly independent.

Example 1.3. x1 =

 1
2
0

 , x2 =

 1
5
1

 , x3 =

 1
−1
−1


a1x1 + a2x2 + a3x3 = 0 ⇒

a1 + a2 + a3 = 0

2a1 + 5a2 − a3 = 0

a2 − a3 = 0

⇒ a1 + 2a2 = 0. ⇒ If a1 = a2 = 0, then a3 = 0. If a1 = 1, then a2 = a3 = 0.5.
Therefore, x1, x2 and x3 are not linearly independent.

2



Introductory Multivariate Methods - Stat 3133 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

– The row and column rank of a matrix are equal.

∗ Rank (A) ≥ 0

∗ Rank (A) ≤ min(n, p)

∗ Rank (A) = Rank (A′)

∗ Rank (A) = Rank (A′A) = Rank (AA′)

• Trace: The trace of a matrix is the sum of its diagonal elements: tr(A) =
k∑
i=1

aii.

– tr(A±B) = tr(A)± trB)

– tr(cA) = c tr(A)

– tr(An×pBp×n) = tr(BA)

– tr(An×pBp×qCq×n) = tr(CAB) = tr(BCA)

• Determinant: Det (A) = |A|

– |aA| = an|A|
– |AB| = |BA| = |A||B|

• Inverse: A square matrix A is said to be non-singular if its rank is equal to the number
of rows (columns).

– If a k× k matrix A is non-singular, then there exist a unique k× k matrix B such
that AB = BA = Ik×k.

∗ The matrix B is called inverse of A denoted by A−1.

∗ A−1 exists if and only if the determinant ofA is non-zero. And hence, |A−1| =
|A|−1.

• Positive Definite Matrix: A symmetric matrix A is said to be positive definite if the
quadratic form Q(x) = x′Ax > 0 for all x 6= 0 where x′ = (x1, x2, · · · , xn).

Example 1.4. A =

[
1 2
2 4

]
, x =

[
2
−1

]
Q(x) = x′Ax =

[
2,−1

] [ 1 2
2 4

] [
2
−1

]
= 0

⇒ A is not positive definite.

– A symmetric matrix A is said to be positive semi-definite if x′Ax ≥ 0 for all
x 6= 0.

1.1.2 Eigenvalues and Eigenvectors

Let A be a k×k matrix and I be a k×k identity matrix. The scalars λ1, λ2, · · · , λk satisfying
the polynomial equation:

|A− λI| = 0

are called the eigenvalues (characteristics roots) of matrix A. These eigenvalues are unique
unless two or more eigenvalues are equal.
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• The equation |A− λI| = 0 as a function of λ is called characteristic equation.

• The eigenvalues of a symmetric matrix with real elements are real. λi’s can be complex
numbers if the matrix is not symmetric.

• The eigenvalues of a positive definite matrix are all positive. If a k × k symmetric
matrix is positive semi-definite of rank r (r < k), then it has r positive and (k− r) zero
eigenvalues.

• The eigenvalues of a diagonal matrix are the diagonal elements themselves.

• The eigenvalues of an idempotent matrix A, that is, A = A2 are 1 and 0.

Associated with every eigenvalue λi of a square matrix A, there is an eigenvector xi whose
elements satisfy the homogenous system of equations:

(A− λiI)xi = 0⇔ Axi = λixi

• If |A− λiI| = 0, there exist at least one non-trivial solution (xi 6= 0).

• The elements of the vector xi are determined only up to a scaled factor because the
system is homogenous, we get only relationship like x1i = 5x2i because the number of
unknowns is greater than the number of equations.

– Since the values of the eigenvectors are trivial, normalizing makes them unique,
that is, the eigenvectors have a unit length.

– The normalized eigenvector, ei, of xi is:

ei =
1

Lxi

xi =
xi√
x′ixi

∗ ||ei|| = e′iei = 1, for all i.

∗ e′iej =
x′i√
x′ixi

xj√
x′jxj

= 0 for all i 6= j.

– The normalized eigenvectors are chosen to satisfy e′1e1 = e′2e2 = · · · = e′kek = 1
and be mutually perpendicular, e′iej = 0, i 6= j.

Example 1.5. Find the eigenvalues and eigenvectors of A =

[
1 2
3 2

]
.

|A− λI| = 0⇒
∣∣∣∣[ 1 2

3 2

]
− λ

[
1 0
0 1

]∣∣∣∣ = 0⇒
∣∣∣∣ 1− λ 2

3 2− λ

∣∣∣∣ = 0

(1− λ)(2− λ)− 6 = 0⇒ λ2 − 3λ− 4 = 0

Thus, the eigenvalues of A are λ1 = 4 and λ2 = −1.

To find the corresponding eigenvectors:

Axi = λixi, i = 1, 2

4
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• For λ1 = 4,

Ax1 = λ1x1 ⇒
[

1 2
3 2

] [
x11
x21

]
= 4

[
x11
x21

]
⇒ x11 + 2x21 = 4x11 ⇒ x21 =

3

2
x11

Let x11 = 2⇒ x21 = 3. Thus, x =

[
2
3

]
- - not unique.

The normalized eigenvector of x =

[
2
3

]
is

e1 =
1√
x′1x1

x1 =
1√

4 + 9

[
2
3

]
=

[
2√
13
3√
13

]
.

Note that e′1e1 = 1.

• For λ2 = −1,

Ax2 = λ2x2 ⇒
[

1 2
3 2

] [
x12
x22

]
= −1

[
x12
x22

]
⇒ x12 + 2x22 = −x12 ⇒ x22 = −x12

Let x12 = 1⇒ x22 = −1. Thus, x =

[
1
−1

]
- - not unique.

The normalized eigenvector of x =

[
1
−1

]
is

e2 =
1√
x′2x2

x2 =
1√

1 + 1

[
1
−1

]
=

[
1√
2

− 1√
2

]
.

Note that e′2e2 = 1. Also, e1 and e2 are orthogonal (perpendicular), that is, e′1e2 = 0.

Example 1.6. Find the eigenvalues and corresponding eigenvectors of the following two
matrices:

A =

[
1 −5
−5 1

]
⇒ λ1 = 6, λ2 = −4 and B =

 13 −4 2
−4 13 −2

2 −2 10

⇒ λ1 = 18, λ2 = 9, λ3 =

9.

1.2 Spectral Decomposition

Any symmetric square matrix can be can be constructed from its eigenvalues and eigenvectors.

Let A be a k × k symmetric matrix having k non-zero eigenvalues λ1, λ2, · · · , λk with
normalized eigenvectors e1, e2, · · · , ek. Then, the spectral decomposition of A is given by:

A = λ1e1e
′
1 + λ2e2e

′
2 + · · ·+ λkeke

′
k =

k∑
j=1

λjeje
′
j .

5
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Example 1.7. A =

(
1 2
2 −2

)

• The eigenvalues: |A− λI| =
∣∣∣∣ 1− λ 2

2 −2− λ

∣∣∣∣ = 0

⇒ λ2 + λ− 6 = 0. Thus, the eigenvalues of A are λ1 = 2 and λ2 = −3.

• The eigenvectors are:

– For λ1 = 2,

Ax1 = λ1x1 ⇔
(

1 2
2 −2

)(
x11
x21

)
= 2

(
x11
x21

)
⇒ x21 = 1

2x11 ⇒ x1 =

(
2
1

)
The normalized eigenvector corresponding to λ1 = 2 is e1 =

(
2√
5
1√
5

)
.

– For λ2 = −3,

Ax2 = λ2x2 ⇒
(

1 2
2 −2

)(
x12
x22

)
= 2

(
x12
x22

)

⇒ x22 = −2x12 ⇒ x2 =

(
1
−2

)
The normalized eigenvector corresponding to λ2 = −3 is e2 =

(
1√
5

− 2√
5

)
.

Note that e′1e1 = e′2e2 = 1 and e′1e2 = e′2e1 = 0.

We need to show A = λ1e1e
′
1 + λ2e2e

′
2.(

1 2
2 −2

)
= 2

(
2√
5
1√
5

)(
2√
5

1√
5

)
− 3

(
1√
5

− 2√
5

)(
1√
5
− 2√

5

)
The matrix is written as a function of eigenvalues and normalized eigenvectors.

In matrix form, the spectral decomposition of A is:

A = OΛO′

where O = (e1, e2, · · · , ek) and Λ = diag(λ1, λ2, · · · , λk) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λk

.

Note here that O′O = OO′ = Ik×k (O is orthogonal, O−1 = O′).
In the above example,

O = (e1, e2) =

[
2√
5

1√
5

1√
5
− 2√

5

]
, Λ =

[
2 0
0 −3

]

6
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⇒ A = OΛO′.

Again, using spectral decomposition, the inverse of A is given by

A−1 = OΛ−1O′

where O = (e1, e2, · · · , ek) and Λ−1 = diag

(
1

λ1
,

1

λ2
, · · · , 1

λk

)
.

⇒ A−1 =

k∑
j=1

1

λj
eje
′
j .

Also, for a positive definite matrix A,

A
1
2 = OΛ

1
2O′

where O = (e1, e2, · · · , ek) and Λ
1
2 = diag

(√
λ1,
√
λ2, · · · ,

√
λk

)
.

⇒ A
1
2 =

k∑
j=1

√
λjeje

′
j .

Example 1.8. Find A−1 and A
1
2 . A =

[
1 2
2 1

]
and A =

 13 −4 2
−4 13 −2

2 −2 10


1.3 Singular Value Decomposition

Let A be an m× k matrix. Then there exist an m×m orthogonal matrix U (i.e., UU ′ = I)
and a k× k orthogonal matrix V (i.e., V V ′ = I) such that A = UΛV ′ where Λ is an m× k
matrix with (i, i) entry λi ≥ 0 for i = 1, 2, · · · ,min(m, k) and the other entries are zero.

• U = (e1, e2, · · · , emin(m,k)) where ei (i = 1, 2, · · · ,min(m, k)) is the normalized eigenvector
corresponding to λi of the matrix AA′.

• V = (e∗1, e
∗
2, · · · , e∗min(m,k)) where e∗i (i = 1, 2, · · · ,min(m, k)) is the normalized eigenvector

corresponding to λ∗i of the matrix A′A.

• Λ =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λmin(m,k)


Note that

√
λi is the eigenvalue of matrix A where λi is the eigenvalue of A′A or AA′.

Example 1.9. A =

[
3 1 1
−1 3 1

]
AA′ =

[
3 1 1
−1 3 1

] 3 −1
1 3
1 1

 =

[
11 1
1 11

]
and

A′A =

 3 −1
1 3
1 1

[ 3 1 1
−1 3 1

]
=

 10 0 2
0 10 4
2 4 2


7
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• Eigenvalues and eigenvectors corresponding to AA′.

|AA′ − λI| = 0⇒
∣∣∣∣ 11− λ 1

1 11− λ

∣∣∣∣ = 0⇒ (11− λ)2 − 1 = 0

λ2 − 22λ+ 120 = 0⇒ λ = 12 or λ = 10.

The eigenvalues of AA′ or A′A are λ1 = 12 and λ2 = 10 which implies the eigenvalues
of A to be λ1 =

√
12 and λ2 =

√
10.

– Eigenvector corresponding to λ1 = 12,

AA′x1 = λ1x1 ⇒
[

11 1
1 11

] [
x11
x21

]
= 12

[
x11
x21

]
⇒ x21 = x11

Let x11 = 1⇒ x21 = 1⇒ x1 =

[
1
1

]
⇒ e1 =

[
1√
2
1√
2

]
– Eigenvector corresponding to λ2 = 10,

AA′x2 = λ2x2 ⇒
[

11 1
1 11

] [
x12
x22

]
= 10

[
x12
x22

]
⇒ x22 = −x12

Let x12 = 1⇒ x22 = −1⇒ x2 =

[
1
−1

]
⇒ e2 =

[
1√
2

− 1√
2

]

U = (e1, e2) =

[
1√
2

1√
2

1√
2
− 1√

2

]
and Λ = diag

(√
λ1,
√
λ2

)
=

[ √
12 0

0
√

10

]
• Eigenvalues and eigenvectors corresponding to A′A.

|A′A− λI| = 0⇒

∣∣∣∣∣∣
10− λ 0 2

0 10− λ 4
2 4 2− λ

∣∣∣∣∣∣ = 0

(10− λ)

∣∣∣∣ 10− λ 4
4 2− λ

∣∣∣∣− 0

∣∣∣∣ 0 4
2 2− λ

∣∣∣∣+ 2

∣∣∣∣ 0 10− λ
2 4

∣∣∣∣ = 0

λ2 − 12λ = 0⇒ λ = 12 or λ = 10 or λ = 0.

– Eigenvector corresponding to λ1 = 12,

A′Ax1 = λ1x1 ⇒

 10 0 2
0 10 4
2 4 2

 x11
x21
x31

 = 12

 x11
x21
x31


10x11 + 0x21 + 2x31 = 12x11

0x11 + 10x21 + 4x31 = 12x21

2x11 + 4x21 + 2x31 = 12x31

⇒ x21 = 2x11 and x31 = x11

Let x11 = 1⇒ x21 = 2 and x31 = 1⇒ x1 =

 1
2
1

⇒ e∗1 =


1√
6
2√
6
1√
6
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– Eigenvector corresponding to λ2 = 10,

A′Ax2 = λ2x2 ⇒

 10 0 2
0 10 4
2 4 2

 x12
x22
x32

 = 10

 x12
x22
x32


10x12 + 0x22 + 2x32 = 10x12

0x12 + 10x22 + 4x32 = 10x22

2x12 + 4x22 + 2x32 = 10x32

⇒ x32 = 0 and x22 = −1
2x12.

Let x12 = 2⇒ x22 = 1⇒ x1 =

 2
−1

0

⇒ e∗2 =


2√
5

− 1√
5

0



V = (e∗1, e
∗
2) =


1√
6

2√
5

2√
6
− 1√

5
1√
6

0



A = UΛV ′ =

[
1√
2

1√
2

1√
2
− 1√

2

] [ √
12 0

0
√

10

][ 1√
6

2√
6

1√
6

2√
5
− 1√

5
0

]
=

[
3 1 1
−1 3 1

]

9



Chapter 2

Aspects of Multivariate Analysis

2.1 Introduction

Multivariate statistical analysis is concerned with data collected with several dimensions of
the same individual (subject or experimental unit). Using multivariate analysis, the variables
can be examined simultaneously in order to access the key features of the process. It enables
us to

• explore the joint performance of the variables and

• determine the effect of each variable in the presence of the others.

As in the univariate case, it is assumed that a random sample of the multi-component
observations has been collected from different individuals. The data consists of simultaneous
measurements on many response variables. The common source of each individual observation
will generally lead to dependence or correlation among the dimension (components). And
this is the feature that distinguishes multivariate data and techniques from their univariate
counterparts.

2.1.1 Objectives of Multivariate Analysis

The objectives of scientific investigations to which multivariate methods most naturally lend
themselves include the following:

1. Data reduction or structural simplification. The phenomenon being studied is
represented as simply as possible without sacrificing valuable information. This will
make interpretation easier. Example: principal component analysis.

2. Sorting and grouping. Groups of ”similar” objects or variables are created, based
upon measured characteristics. Example: discriminant analysis.

3. Investigation of the dependence among variables. Studying the covariance
structure will help determine the nature of the relationships among variables. In
multivariate study, the interest is on the off-diagonals (covariances). Are all the variables
mutually independent or are one or more variables dependent on the others? If so, how?
Example: canonical correlation analysis.

10
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4. Prediction. The relationship between variables can be determined for the purpose of
predicting the values of one or more variables on the basis of observations on the other
variables. Example: multivariate linear regression, multivariate analysis of variance.

5. Hypothesis testing. Specific statistical hypotheses can be tested to validate assumptions
or to reinforce prior convictions.

2.1.2 Organization of Multivariate Data

Most multivariate data sets can be represented in a rectangular format, in which the elements
of each row correspond to the variables values of a particular unit and the elements of the
columns correspond to the values taken by a particular variable.

Suppose there are p ≥ 2 variables (characteristics) measured from n items. Let xij denote
the value of the jth variable on the ith item (i = 1, 2, · · · , n and j = 1, 2, · · · , p, n >> p).
Consequently, the data can be displayed as follows:

Variable 1 Variable 2 · · · Variable j · · · Variable p
Item 1 x11 x12 · · · xlj · · · xlp
Item 2 x21 x22 · · · x2j · · · x2p

...
...

...
. . .

...
...

...
Item i xi1 xi2 · · · xij . . . xip

...
...

...
...

...
. . .

...
Item n xn1 xn2 · · · xnj · · · xnp

This can be written as a rectangular array, matrix, X of n rows and p columns:

X =



x11 x12 · · · x1j · · · xlp
x21 x22 · · · x2j · · · x2p

...
...

. . .
...

...
...

xi1 xi2 . . . xij . . . xip
...

...
...

...
. . .

...
xn1 xn2 · · · xnj · · · xnp


n×p

A single multivariate observation is the collection of measurements on p different variables on
the same item. Each row of X represents a multivariate observation.

X =



x11 x12 · · · x1j · · · x1p
x21 x22 · · · x2j · · · x2p

...
...

. . .
...

...
...

xi1 xi2 . . . xij . . . xip
...

...
...

...
. . .

...
xn1 xn2 · · · xnj · · · xnp


=



x′1
x′2
...
x′i
...
x′n



← 1st multivariate observation
← 2nd multivariate observation

← ith multivariate observation

← nth multivariate observation

11
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Descriptive Statistics

A large data set is bulky, and its very mass poses a serious obstacle to any attempt to visually
extract pertinent information. Much of the information contained in the data can be assessed
by calculating certain summary numbers, known as descriptive statistics. For example, the
arithmetic average, or sample mean, is a descriptive statistic that provides a measure of
location-that is, a ”central value” for a set of numbers. And the average of the squares of the
distances of all of the numbers from the mean provides a measure of the spread, or variation,
in the numbers.

• Sample mean: x̄j =
1

n

n∑
i=1

xij ; j = 1, 2, · · · , p

• Sample variance: s2j = sjj =
1

n

n∑
i=1

(xij − x̄j)2; j = 1, 2, · · · , p

• Sample covariance between Xj and Xk: sjk =
1

n

n∑
i=1

(xij − x̄j)(xik − x̄k); j, k =

1, 2, · · · , p; j 6= k. Note sjk = skj for all j and k.

• Sample correlation coefficient between variable j and k: rjk =
sjk√
sjj
√
skk

; j, k =

1, 2, · · · , p. Note rjk = rkj and rjk = 1 if j = k.

Although, the sign of the sample correlation and sample covariance are the same, the
correlation is ordinarily easier to interpret as:

– its magnitude is bounded, that is, −1 ≤ rjk ≤ 1 for all j and k.

– it is unitless.

– it takes the variability into account.

But the major disadvantages of correlation are it does not measure non-linear associations
and it does not indicate any cause and effect.

The descriptive statistics for all the p variables in terms of vector and matrix operations are:

• Sample mean vector: x̄ =
1

n

n∑
i=1

xi =
1

n

n∑
i=1


xi1
xi2
...
xip

 =


x̄1
x̄2
...
x̄p


p×1

.

Also,

x̄ =
1

n
X ′1 =



x11 x21 · · · xi1 · · · xn1
x12 x22 · · · xi2 · · · xn2

...
...

. . .
...

...
...

x1j x2j . . . xij . . . xnj
...

...
...

...
. . .

...
x1p x2p · · · xip · · · xnp


p×n



1
1
...
1
...
1


n×1

12
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• Sample variance-covariance matrix: Sn =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′.

Sn =
1

n

[
X ′X − 1

n
X ′1(X ′1)′

]
=

1

n

(
X ′X − 1

n
X ′11′X

)

⇒ Sn =


s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
. . .

...
sp1 sp2 · · · spp


p×p

Consequently, the sample standard deviation matrix is written as:

V
1
2
n =


√
s11 0 · · · 0
0

√
s22 · · · 0

...
...

. . .
...

0 0 · · · √spp


p×p

• Sample correlation matrix: R = (V
1
2
n )−1Sn(V

1
2
n )−1

⇒ R =


r11 r12 · · · r1p
r21 r22 · · · r2p
...

...
. . .

...
rp1 rp2 · · · rpp

 =


1 r12 · · · r1p
r21 1 · · · r2p
...

...
. . .

...
rp1 rp2 · · · 1


p×p

Note Sn = V
1
2
n RV

1
2
n . Note also that Sn and R are symmetric and positive definite.

Example 2.1. Find the sample mean vector, covariance and correlation matrices for the
following data matrix.  4 1

−1 3
3 5


We find three observations, and here is what we observe (with notation: x11 = 4, x21 = −1,
x31 = 3 and x12 = 1, x22 = 3, x32 = 5). The data array would the look like:

X =

 x11 x12
x21 x22
x31 x32

 =

 4 1
−1 3

3 5


2.2 Random Vectors and Matrices

A random vector (matrix) is a vector (matrix) whose elements are random variables. Let Xj

be the jth variable, then

• Mean(Xj) = µj = E(Xj); j = 1, 2, · · · , p

13
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• Var(Xj) = σ2j = E(Xj − µj)2; j = 1, 2, · · · , p

• Cov(Xj , Xk) = σjk = E(Xj − µj)(Xk − µk); j, k = 1, 2, · · · , p

• Cor(Xj , Xk) = ρjk =
σjk√

σjj
√
σkk

; j, k = 1, 2, · · · , p

Let X be an n× p random vector, i.e, X = (X1, X2, · · · , Xp)
′. Then the mean vector is:

E(X) = E


X1

X2
...
Xp

 =


E(X1)
E(X2)

...
E(Xp)

 =


µ1
µ2
...
µp

 = µ

The population variance-covariance matrix is:

Σ = E(X − µ)(X − µ)′ = E



X1 − µ1
X2 − µ2

...
Xp−µp

 [X1 − µ1, X2 − µ2, · · · , Xp − µ2
]


⇒ Σ = E


(X1 − µ1)2 (X1 − µ1)(X2 − µ2) · · · (X1 − µ1)(Xp − µp)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 · · · (X2 − µ2)(Xp − µp)
...

...
. . .

...
(Xp − µp)(X1 − µ1) (Xp − µp)(X2 − µ2) . . . (Xp − µp)2



=


E(X1 − µ1)2 E(X1 − µ1)(X2 − µ2) . . . E(X1 − µ1)(Xp − µp)

E(X2 − µ2)(X1 − µ1) E(X2 − µ2)2 . . . E(X2 − µ2)(Xp − µp)
...

...
. . .

...
E(Xp − µp)(X1 − µ1) E(Xp − µp)(X2 − µ2) . . . E(Xp − µp)2



Thus, Σ =


σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp


p×p

.

If the p components are independently distributed (which rarely happens), then all the
1
2p(p − 1) covariances of Σ will be zero. This cannot dealt with multivariate analysis rather
univariate analysis.

The population standard deviation matrix is written as:

σ
1
2 =


√
σ11 0 · · · 0
0

√
σ22 · · · 0

...
...

. . .
...

0 0 · · · √σpp


p×p

14
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Also, the population correlation matrix is ρ = (σ
1
2 )−1Σ(σ

1
2 )−1, that is,

ρ =


1 ρ12 · · · ρ1p
ρ21 1 · · · ρ2p
...

...
. . .

...
ρp1 ρp2 · · · 1


p×p

Note Σ = σ
1
2ρσ

1
2 . Also here, Σ and ρ are symmetric and positive definite.

2.3 Distance of Vectors

Most multivariate techniques are based upon the simple concept of distance. If the point
P = (x1, x2) is the point on the XY plane, then the Euclidean (straight line) distance from
P to the origin O = (0, 0) is given by the Pythagorean theorem. That is,

dE(O,P ) =
√

(x1 − 0)2 + (x2 − 0)2 =
√
x21 + x22.

All the points (x1, x2) that lie a constant distance, say c, from the origin satisfying the
equation c =

√
x21 + x22 ⇒ c2 = x21 + x22 is called equation of a circle with radius c.

The Euclidean distance between two points P = (x1, x2) and Q = (y1, y2) in the two
dimensional space is

dE(P,Q) =
√

(x1 − y1)2 + (x2 − y2)2.
Similarly, the Euclidean distance between P = (x1, x2, · · · , xp) and Q = (y1, y2, · · · , yp) in
the p dimensional space is

dE(P,Q) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xp − yp)2 =
√

(x− y)′(x− y).

Suppose X ′ = (X1, X2, · · · , Xp) follows a p dimensional distribution with mean E(X) = µ
and covariance matrix Cov(X) = Σ. And suppose again x̄ = (x̄1, x̄2, · · · , x̄p)′ is a vector of
means based on an n× p observed data matrix.

The Euclidean distance between the sample mean x̄ and the theoretical mean µ is given by

dS(x̄,µ) =
√

(x̄− µ)′(x̄− µ).

Straight line or Euclidean distance is unsatisfactory for most statistical purposes. This is
because each co-ordinate contributes equally to the calculation of Euclidean distance. This
suggests a statistical measure of distance.

The statistical distance between x̄ and µ is given by

dS(x̄,µ) =
√

(x̄− µ)′Σ−1(x̄− µ).

⇒ dS(x̄,µ) =

√√√√√√√√[x̄1 − µ1, x̄2 − µ2, · · · , x̄p − µp]

σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp


−1 

x̄1 − µ1
x̄2 − µ2

...
x̄p − µp


15
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Hence, a statistical distance takes into account the variability as well as the correlation unlike
the Euclidean distance.

• If Σ = I, the Euclidean and statistical distances are equal.

• If σij = 0 for i 6= j, the statistical distance is given by:

dS(x̄,µ) =

√
(x1 − µ1)2

σ11
+

(x2 − µ2)2
σ22

+ · · ·+ (xp − µp)2
σpp

.

If one component has much larger variance than another, it will contribute less to the squared
distance. Two highly correlated variables will contribute less than two variables that are
nearly uncorrelated. Essentially, the use of the inverse of the covariance matrix eliminates
the effect of correlation and standardizes all of the variables.

Example 2.2. Let x =

[
x1
x2

]
, µ =

[
µ1
µ2

]
and Σ =

[
4 0
0 1

]
. The variability in the x1 direction

is greater than that in the x2 direction as σ11 = 4 > σ22 = 1.

Euclidean distance: dE =
√

(x1 − µ1)2 + (x2 − µ2)2.

Statistical distance: dS =
√

(x− µ)′Σ−1(x− µ).

⇒ dS =

√
(x1 − µ1, x2 − µ2)

[
1
4 0
0 1

] [
x1 − µ1
x2 − µ2

]

⇒ dS =

√
(x1 − µ1)2

4
+

(x2 − µ2)2
1

This is simply an equation of ellipse which is centered at µ = (µ1, µ2)
′. All points that lie a

constant distance, say c = 2 (the boundary of the ellipse), from the theoretical mean µ satisfy
the equation

(x1 − µ1)2

4
+

(x2 − µ2)2

1
= c2 = 4.

At x1 = µ1, (x2 − µ2)2 = 4 ⇒ x2 − µ2 = ±2⇒ x2 = µ2 ± 2.
At x2 = µ2, (x1 − µ1)2 = 16 ⇒ x1 − µ1 = ±4⇒ x1 = µ1 ± 4.

Plotoftheellipse

The ellipse stretches in the x1 direction as compared to that in the x2 direction because of
the larger variance in x1 (the ellipse is parallel to the x1). Having the same variance in both
axes, the equation will be simply a circle.

2.4 Linear Combinations of Random Vectors

1. Univariate case: For a single random variable X, E(X) = µ and Var(X) = E(X −
µ)2 = σ2. Then, for a linear combination Z = aX, E(aX) = aE(X) = aµ, and
Var(aX) = a2Var(X) = a2σ2 for a ∈ R.

16
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2. Bivariate case: For two random variables, X1 and X2, E(X1) = µ1 and E(X2) = µ2;
Var(X1) = E(X1 − µ1)

2 = σ11 and Var(X2) = E(X2 − µ2)
2 = σ22; Cov(X1, X2) =

E(X1 − µ1)(X2 − µ2) = σ12.

IfX ′ = (X1, X2) and a′ = (a1, a2), then the linear combination Z = a′X = a1X2+a2X2

is a one-dimensional random variable.

• E(a′X) = E(a1X1 + a2X2) = a1E(X1) + a2E(X2) = a1µ1 + a2µ2

⇒ E(a′X) = (a1, a2)

[
µ1
µ2

]
= a′µ

• Var(a′X) = Var(a1X1 + a2X2) = E[a1X1 + a2X2 − (a1µ1 + a2µ2)]
2

⇒ Var(a′X) = a21σ11 + a22σ22 + 2a1a2σ12

= (a1, a2)

[
σ11 σ12
σ12 σ22

] [
a1
a2

]
= a′Σa

3. Multivariate case: If X a p-dimensional random vector, X = (X1, X2, · · · , Xp), and
a ∈ Rp, then the linear combination Z = a′X = a1X1+a2X2+ · · ·+apXp is univariate.
That is,

• E(a′X) = a′E(X) = a′µ

• Var(a′X) = E(a′X − a′µ)2 = a′E(X − µ)(X − µ)′a = a′Σa

4. Consider q linear combinations of p random variables.

Z1 = a′1X = a11X1 + a12X2 + · · ·+ a1pXp =

p∑
j=1

a1jXj

Z2 = a′2X = a21X1 + a22X2 + · · ·+ a2pXp =

p∑
j=1

a2jXj

...

Zq = a′qX = aq1X1 + aq2X2 + · · ·+ aqpXp =

p∑
j=1

aqjXj

In matrix form: 
Z1

Z2
...
Zq

 =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
. . .

...
aq1 aq2 · · · aqp



X1

X2
...
Xp

⇔ Z = AX

• E(Z) = E(AX) = AE(X) = Aµ

• Cov(Z) = Cov(AX) = AE(X − µ)(X − µ)′A′ = AΣA′

17
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Example 2.3. Find the mean vector and covariance matrix for the linear combinations
Z1 = X1 −X2 and Z2 = X1 +X2.

Z =

[
1 −1
1 1

] [
X1

X2

]
= AX

• E(Z) = AE(X) = Aµ =

[
1 −1
1 1

] [
µ1
µ2

]
=

[
µ1 − µ2
µ1 + µ2

]
• Cov(Z) = ACov(Z)A′

⇒ Cov(Z) =

[
1 −1
1 1

] [
σ11 σ12
σ12 σ22

] [
1 1
−1 1

]
=

[
σ11 − 2σ12 + σ22 σ11 − σ22
σ11 − σ22 σ11 + 2σ12 + σ22

]

2.5 Expected Value of the Sample Mean Vector and Covariance
Matrix

Let X be a random matrix given by:

X =


X11 X12 · · · Xlp

X21 X22 · · · X2p
...

...
...

...
Xn1 Xn2 · · · Xnp

 =


X ′1
X ′2
...
X ′n


If X1, X2, · · · , Xn is a random sample from some joint distribution with mean vector µ and
covariance matrix Σ, then

• E(X̄) =
1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µ = µ. Thus, X̄ is an unbiased estimator of the mean

vector µ.

• Cov(X̄) = E(X̄ − µ)(X̄ − µ)′.

Cov(X̄) =


E(X̄1 − µ1)2 E(X̄1 − µ1)(X̄2 − µ2) · · · E(X̄1 − µ1)(X̄p − µp)

E(X̄2 − µ2)(X̄1 − µ1) E(X̄2 − µ2)2 · · · E(X̄2 − µ2)(X̄p − µp)
...

...
. . .

...
E(X̄p − µp)(X̄1 − µ1) E(X̄p − µp)(X̄2 − µ2) · · · E(X̄p − µp)2



=



1

n
σ11

1

n
σ12 · · · 1

n
σ1p

1

n
σ21

1

n
σ22 · · · 1

n
σ2p

...
...

. . .
...

1

n
σp1

1

n
σp2 · · · 1

n
σpp


=

1

n
Σ

Recall the sample variance-covariance matrix Sn =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)′. It can

be shown that E(Sn) =
n− 1

n
Σ. Thus, Sn is a biased estimator of Σ. This implies
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S =
n

n− 1
Sn =

1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ is an unbiased estimator of Σ, i.e.,

E(S) =
n

n− 1
E(Sn) =

n

n− 1

n− 1

n
Σ = Σ.
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Chapter 3

The Multivariate Normal
Distribution

Just as the normal distribution dominates univariate techniques, the multivariate normal
distribution plays an important role in most multivariate procedures, because

• the multivariate normal distribution is mathematically tractable and ”nice” results
can be obtained. Mathematical complexity of other data generating distributions may
prevent the development of sampling distribution of the usual test statistics and estimators.

• the sampling distribution of many multivariate statistics are approximately normal,
regardless of the the form of the parent population, because of the central limit effect;
i.e., as the number of source random vectors increases without bound.

3.1 The Multivariate Normal Density and Its Properties

Univariate case:

Let X be a random variable with E(X) = µ and var(X) = σ2. Then if X ∼ N (µ, σ2), its
pdf is given by

f(x) =
1√
2πσ

exp

[
−1

2

(x− µ)2

σ2

]
.

Note the term
(x− µ)2

σ2
= (x−µ)(σ2)−1(x−µ) measures the squared statistical distance form

x to µ in standard deviation units.

Multivariate case:

Suppose X ′ = (X1, X2, · · · , Xp) is a p × 1 vector with E(X) = µ and Cov(X) = E(X −
µ)(X − µ)′ = Σ. The joint density of p independent normal variates, X ∼ Np(µ,Σ), is:
f(x) = f(x1, x2, · · · , xp) = f(x1)f(x2) · · · f(xp)

f(x) = 1√
2πσ1

exp
[
−1

2
(x1−µ1)2

σ2
1

]
1√
2πσ2

exp
[
−1

2
(x2−µ2)2

σ2
2

]
· · · 1√

2πσp
exp

[
−1

2
(xp−µp)2

σ2
p

]
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⇒ f(x) =
1(√
2π
)p 1

σ1σ2 · · ·σp
exp

−1

2

p∑
j=1

(xj − µj)2

σ2j


Since Σ = diag(σ11, σ22, · · · , σpp), |Σ| = σ11σ22 · · ·σpp and |Σ|

1
2 = σ1σ2 · · ·σp. Also,

p∑
j=1

(xj − µj)2

σ2j
=

p∑
j=1

(xj − µj)(σ2j )−1(xj − µj) = (x− µ)′Σ−1(x− µ)

Therefore, the joint density is

f(x) =
1

(2π)
p
2 |Σ|

1
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
.

The general p dimensional normal density function is obtained by letting Σ to be any p × p
symmetric matrix,

Σ =


σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp

 .
Here, the jth element of µ is still E(Xj) = µj . And the jth element of Σ is still σjj =
E(Xj − µj)2 but the (j, k)th element of Σ is now σjk = E(Xj − µj)(Xk − µk), i 6= k.

For a general p dimensional normal density function, X ∼ Np(µ,Σ), (x−µ)′Σ−1(x−µ) = c2

is the squared statistical distance from x to µ.

Note the symmetric matrix Σ is positive definite (all eigenvalues are positive). Let a′ =
(a1, a2, · · · , ap). We need to show a′Σa > 0. Hence, a′Σa = a′E(X − µ)(X − µ)′a since
Σ = E(X − µ)(X − µ)′. Since (X − µ)′a is a scalar, its transpose makes no change, i.e.,
a′Σa can be written as E[a′(X − µ)(X − µ)′a] = E[a′(X − µ)a′(X − µ)] > 0. Therefore,
Σ is positive definite.

Example 3.1. Bivariate normal distribution (p = 2).

X =

[
X1

X2

]
, µ =

[
µ1
µ2

]
and Σ =

[
σ11 σ12
σ21 σ22

]
ρ12 =

σ12√
σ11
√
σ22
⇒ σ12 = ρ12

√
σ11
√
σ22

⇒ Σ =

[
σ11 ρ12

√
σ11
√
σ22

ρ12
√
σ11
√
σ22 σ22

]
⇒ |Σ| = σ11σ22 − ρ212σ11σ22 = (1− ρ212)σ11σ22

⇒ Σ−1 =
1

(1− ρ212)σ11σ22

[
σ22 −ρ12

√
σ11
√
σ22

−ρ12
√
σ11
√
σ22 σ11

]
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The squared statistical distance is (X − µ)′Σ−1(X − µ) = c

c = [X1 − µ1, X2 − µ2]
1

(1− ρ2)σ11σ22

[
σ22 −ρ12

√
σ11
√
σ22

−ρ12
√
σ11
√
σ22 σ11

] [
X1 − µ1
X2 − µ2

]
=

1

(1− ρ212)σ11σ22
[σ22(x1 − µ1)− ρ12

√
σ11
√
σ22(x2 − µ2),

−ρ12
√
σ11
√
σ22(x1 − µ1) + σ11(x2 − µ2)]

[
x1 − µ1
x2 − µ2

]
=

1

(1− ρ212)σ11σ22
[σ22(x1 − µ1)2 − 2ρ12

√
σ11
√
σ22(x1 − µ1)(x2 − µ2) + σ11(x2 − µ2)2]

=
1

(1− ρ212)

[
(x1 − µ1)2

σ11
− 2ρ12

(
x1 − µ1√

σ11

)(
x2 − µ2√

σ22

)
+

(x2 − µ2)2

σ22

]
Therefore, the bivariate normal density is given by:

f(x1, x2) =
1

2π
√

(1− ρ212)σ11σ22
exp(−1

2
c).

3.1.1 Principal Axis of the Multivariate Normal Density

The component (x−µ)′Σ−1(x−µ) specifies the equation of an ellipsoid in the p dimensional
space when it is set equal to some positive constant c. The family of ellipsoids generated by
varying c have a common point µ, that is, each ellipsoid is centered at µ = (µ1, µ2, · · · , µp)′.
For example, figure 3.1 represents an ellipse for p = 2 obtained by varying the boundary of
the ellipse c.

−5 0 5 10

−
10

−
5

0
5

10

a

b

Figure 3.1: Plot of an ellipse for a bivariate normal distribution (p = 2)

The first principal axis of each ellipsoid is the line passing through its largest dimension and
the second which is perpendicular. If any line through µ of an ellipsoid is represented by
its coordinates x on the surface, then the first principal axis will have coordinates x that
maximized its squared half length, d2 = (x− µ)′(x− µ).
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So, to maximize d2 = (x−µ)′(x−µ) subject to the constraint (x−µ)′Σ−1(x−µ) = c (c is
fixed), the lagrange function is used as

f(x) = (x− µ)′(x− µ)− λ[(x− µ)′Σ−1(x− µ)− c]

where λ is the lagrange multiplier. Thus, the coordinates of the longest axis must satisfy the
equation

∂

∂x
f(x) = 0⇒ 2(x− µ)− 2λΣ−1(x− µ) = 0⇒ (I − λΣ−1)(x− µ) = 0.

Then, pre-multiplying by Σ gives

(Σ− λI)(x− µ) = 0.

The trivial solution is (x − µ) = 0. In order to have a non-trivial solution, |Σ − λI| = 0.
Hence, λ is the eigenvalues of Σ. But, to which of the p eigenvalues of Σ, does the vector
x correspond? From above, we have (I − λΣ−1)(x − µ) = 0. This implies, (x − µ) =
λΣ−1(x− µ). Pre-multiplying this equation by (x− µ)′, yields

(x− µ)′(x− µ) = λ(x− µ)′Σ−1(x− µ)

⇒ d2 = λc.

For a fixed c, the length of the principal axis is maximized by taking λ as the largest eigenvalue
λ1 of Σ. Thus, the half length of the major (principal) axis is equal to d1 =

√
λ1c in the

direction of e1 (where e1 is the normalized eigenvector corresponding to the eigenvalue λ1 of
Σ). Consequently, the full length of the principal axis is equal to 2d1 = 2

√
λ1c.

Example 3.2. Consider the bivariate case, p = 2. That is, X =

[
X1

X2

]
with µ =

[
µ1
µ2

]
and Σ =

[
σ11 σ12
σ21 σ22

]
. Assume µ1 > µ2, σ11 = σ22 and σ12 > 0.

Let us plot the ellipse. Note that the ellipse could not be parallel to the X or Y axis as the
off-diagonal of Σ is not zero.

To find the eigenvalues of Σ: |Σ− λI| = 0⇒
∣∣∣∣ σ11 − λ σ12

σ12 σ11 − λ

∣∣∣∣ = 0⇒ λ2 + 2σ11λ+ σ211−

σ212 = 0. This equation is quadratic in λ. Therefore, λ1 = σ11 + σ12 and λ2 = σ11 − σ12.

The eigenvectors (orientations) of the major and minor axes:

• For λ1 = σ11 + σ12 ⇒ Σx1 = λ1x1.[
σ11 σ12
σ12 σ11

] [
x11
x21

]
= (σ11 + σ12)

[
x11
x21

]

⇒ σ11x11 + σ12x21 = σ11x11 + σ12x11
σ12x11 + σ11x21 = σ11x21 + σ12x21

⇒ x21 = x11.
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The major axis will be parallel to the line x21 = x11. Let x11 = 1⇒ x21 = 1. Thus, the
eigenvector corresponding to λ1 = σ11 + σ12 is x1 = (1, 1)′. The normalized eigenvector
corresponding to λ1 = σ11 + σ12 is e1 = (1/

√
2, 1/
√

2)′ which is the coordinates of the
major axis. Hence, the first principal axis lies along the 45◦ through the center point
µ = (µ1, µ2)

′.

• For λ2 = σ11 − σ12 ⇒ Σx2 = λ2x2.[
σ11 σ12
σ12 σ11

] [
x12
x22

]
= (σ11 − σ12)

[
x12
x22

]

⇒ σ11x12 + σ12x22 = σ11x12 − σ12x12
σ12x12 + σ11x22 = σ11x22 − σ12x22

⇒ x22 = −x12.

The minor axis will be parallel to the line x22 = −x12. Let x12 = 1 ⇒ x22 = −1.
Thus, the eigenvector corresponding to λ2 = σ11−σ12 is x2 = (1,−1)′. The normalized
eigenvector corresponding to λ2 = σ11 − σ12 is e2 = (1/

√
2,−1/

√
2)′ which is the

coordinates of the minor axis.

Note the major and minor axes are perpendicular, that is, e′1e2 = e′2e1 = 0.

Beginning at the center µ, the half length of the major axis is d1 =
√
λ1c =

√
(σ11 + σ12)c

in the direction of e1 and the half length of the minor axis is d2 =
√
λ2c =

√
(σ11 − σ12)c in

the direction of e2.

Now, the plot of the ellipse is as shown below.

InserttheP lothere

Along the ellipse shown above (on the boundary of the ellipse) the bivariate normal density
is constant. This path along the surface is called a contour.

Note:

• If σ12 = 0, then the equations of the major and minor axes will be reversed. That is, the
major axis will be parallel to the line x11 = −x21 while the minor axis will be parallel
to the line x12 = x22.

• If σ12 = 0 (ρ12 = 0), then the concentration ellipse would simply be a circle and an
infinity of perpendicular axes can be given as ”principal”, each with half length

√
σ11c.

Remarks: Recall spectral decomposition. LetO be a matrix whose columns are the normalized
eigenvectors of Σ and let Λ be a diagonal matrix whose diagonals are the eigenvalues of Σ.
Then, using spectral decomposition

Σ =

p∑
j=1

λjeje
′
j = OΛO′,Σ−1 =

p∑
j=1

1

λj
eje
′
j = OΛ−1O′ and Σ

1
2 =

p∑
j=1

√
λjeje

′
j = OΛ

1
2O′

Generally,

24



Introductory Multivariate Methods - Stat 3133 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

• (x− µ)′Σ−1(x− µ) = c defines ellipsoids of different sizes depending on c.

• Each ellipsoid is centered at µ = (µ1, µ2, · · · , µp)′.

• The half lengths of the axes are dj =
√
λjc in the direction of ej ; j = 1, 2, · · · , p.

3.1.2 Further Properties of the Multivariate Normal Density

Let X ∼ Np(µ,Σ), then

1. Linear combinations of the components of X are also normally distributed. That is, if
X ∼ Np(µ,Σ), then a′X = a1X1 + a2X2 + · · · + apXp will have a univariate normal
distribution. That is, a′X ∼ N (a′µ,a′Σa).

More specifically, the marginal distribution of any component Xj of X is N (µj , σjj).
Let a′ = (0, 0, · · · , 1︸︷︷︸

jthposition

, · · · , 0) and µ = (µ1, µ2, · · · , µj , · · · , µp)′. Then a′X =

Xj ∼ N (µj , σjj).

Similarly, if X ∼ Np(µ,Σ), the q linear combinations

Z = AX =


a11X1 + a12X2 + · · ·+ a1pXp

a21X1 + a22X2 + · · ·+ a2pXp
...

aq1X1 + aq2X2 + · · ·+ aqpXp

 ∼ Nq(Aµ,AΣA′).

2. All subsets of the components of X have a (multivariate) normal distribution. That is,

if X ∼ Np(µ,Σ), then

 Xq×1
−−−−
X(p−q)×1

 with have a multivariate normal distribution with

µ =

 µq×1
−−−−
µ(p−q)×1

 and Σ =

 Σ11
q×q | Σ12

q×(p−q)
−−−− | − −−−
Σ21

(p−q)×q | Σ22
(p−q)×(p−q)

.

3. Zero covariance implies that the corresponding components are independently distributed
(for normal distribution only). X1 and X2 are independent if and only if cov(X1, X2) =
0. That is, if cov(X1, X2) = 0, f(x1, x2) = f(x1)f(x2).

4. The conditional distributions of the components are (multivariate) normal. f(x1|x2) =
f(x1, x2)

f(x2)
∼ N

[
µ1 +

σ12
σ22

(x2 − µ2), σ11 −
σ212
σ22

]
.

3.2 Sampling from the Multivariate Normal Distribution

3.2.1 The Multivariate Normal Likelihood

Recall if X ∼ Np(µ,Σ), then the multivariate normal density is given by

f(x) =
1

(2π)
p
2 |Σ|

1
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
.
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LetXi; i = 1, 2, · · · , n represent a (vector) random sample fromNp(µ,Σ). SinceX1,X2, · · · ,Xn

are mutually independent and each is distributed as Np(µ,Σ), the joint distribution is

f(x1,x2, · · · ,xn|µ,Σ) =
n∏
i=1

f(xi) =
n∏
i=1

1

(2π)
p
2 |Σ|

1
2

exp

[
−1

2
(xi − µ)′Σ−1(xi − µ)

]

=
1

(2π)
np
2 |Σ|

n
2

exp

[
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

]
.

This expression as a function of µ and Σ for a fixed set of observations x1,x2, · · · ,xn is called
likelihood function denoted by `(µ,Σ|x1,x2, · · · ,xn). That is,

`(µ,Σ|x1,x2, · · · ,xn) =
1

(2π)
np
2 |Σ|

n
2

exp

[
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

]
.

To get the ML estimate of µ and Σ,
∂

∂µ
log ` = 0 and

∂

∂Σ
log ` = 0. Thus, it results

µ̂ =
1

n

n∑
i=1

xi = x̄ and Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′ =
n− 1

n
S.

3.2.2 The Sampling Distribution of X̄ and S

• Univariate case: Xi; i = 1, 2, · · · , n be a random sample from N(µ, σ2). Then,

a. X̄ ∼ N(µ,
1

n
σ2).

b.
(n− 1)S2

σ2
∼ χ2(n− 1) where n > 1 and σ2 > 0.

c. If n > 1, then X̄ and S are independent where X̄ =
1

n

n∑
i=1

Xi and S =
1

n− 1

n∑
i=1

(Xi−

X̄)2.

• Multivariate case: Let Xi; i = 1, 2, · · · , n be a random sample of (vectors) from
Np(µ,Σ). Then,

a. X̄ ∼ Np(µ,
1

n
Σ).

b. (n − 1)S is distributed as Wishart distribution (matrix) with n − 1 degrees of
freedom.

c. X̄ and S are independent.

The sampling distribution of the sample covariance matrix is called the Wishart distribution.
It is defined as the sum of independent products of multivariate normal random vectors, Zi.

→Wn(·|Σ) Wishart distribution with n degrees of freedom = distribution of
n∑
i=1
ZiZ

′
i. (Note

for univariate distribution,
n∑
i=1

Z2
i ∼ χ2(n).
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3.2.3 Large Sample Behaviour of X̄ and S

• Recall if X ∼ Np(µ,Σ) with |Σ| > 0, then

– (X − µ) ∼ Np(0,Σ)

– Z = Σ−
1
2 (X − µ) ∼ Np(0, Ip)

– Z ′Z = (X − µ)′Σ−1(X − µ) = Z2
1 + Z2

2 + · · ·+ Z2
p ∼ χ2(p).

• Let Xi; i = 1, 2, · · · , n be a random sample from any distribution with mean µ and
finite covariance Σ. Then,

– (X̄ − µ) ∼ Np(0,
1

n
Σ) for large n.

–
√
n(X̄ − µ) ∼ Np(0,Σ) for large n.

– Since for large n, S is close to Σ with high probability,
√
n(X̄ − µ) ∼ Np(0,S).

– Z =
√
nΣ−

1
2 (X̄ − µ) ∼ Np(0, Ip)

– Z ′Z = n(X̄ − µ)′Σ−1(X̄ − µ) ∼ χ2(p) for large n− p.
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Chapter 4

Inference about a Mean Vector

One of the central messages of multivariate analysis is that the p correlated variables must
be analysed jointly.

4.1 The Plausibility of µ0 as a Value for a Normal Population
Mean µ

Univariate case:

Suppose a random sample of X1, X2, · · · , Xn is drawn from a normal population with mean
µ and variance σ2 (in practice σ2 is unknown, s is used instead). Given H0 : µ = µ0 versus
H1 : µ 6= µ0. The test statistic is

t =
X̄ − µ0
s/
√
n
∼ t(n− 1).

The null hypothesis is rejected if |t| is large. Rejecting H0 when |t| is large is equivalent to
rejecting H0 if t2 is large. Hence, the test statistic becomes

t2 =

(
X̄ − µ0
s/
√
n

)2

= (X̄ − µ0)
[
s2

n

]−1
(X̄ − µ0)

= n(X̄ − µ0)(s2)−1(X̄ − µ0) ∼ t2(n− 1) = F (1, n− 1)

Given a sample of n observations x1, x2, · · · , xn, H0 should be rejected, that µ0 is a plausible
value for µ, if the observed

|t| =
∣∣∣∣ x̄− µ0s/
√
n

∣∣∣∣
exceeds tα/2(n−1) or if the observed t2 = n(x̄−µ0)[s2]−1(x̄−µ0) > t2α/2(n−1) = Fα(1, n−1).

Multivariate case:

Let X1, X2, · · · , Xn be a random sample from Np(µ,Σ). The hypothesis to be tested is
H0µ = µ0 versus H1 : µ 6= µ0. To test it, the squared statistical distance from X̄ to µ0 is
considered. Thus, the test statistic which is analog of the univariate t2 is

T 2 = n(X̄ − µ0)
′S−1(X̄ − µ0) ∼

(n− 1)p

n− p
F (p, n− p)
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where

X̄ =
1

n

n∑
i=1

Xi and S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

This test statistic is called Hotelling’s T 2 statistic. If T 2 is ”too large”, i.e., X̄ is ”too far”
from µ0, then H0 : µ = µ0 is rejected which means µ0 is not a plausible value for µ.

If n independent observation vectors x1, x2, · · · , xn are collected, then H0 : µ = µ0 is

rejected if T 2 = n(x̄− µ0)
′S−1(x̄− µ0) > c∗ where c∗ =

(n− 1)p

n− p
Fα(p, n− p).

Example 4.1. Laboratory analysis of two different nutrients (A and B) for each of a sample
of size n = 10 of the same food (in mg per 100 gram portion) revealed the following.

A 3.17 3.45 3.73 1.82 4.39 2.91 3.54 4.09 2.85 2.05

B 3.45 2.35 5.09 3.88 3.64 4.63 2.88 3.98 3.74 4.36

Does it appear that the sample come from a food with mean nutrient amount vector µ0 =
(3, 5)′?

Summary statistics: p = 2, n = 10

x̄j =
1

n

n∑
i=1

xij ; j = 1, 2

⇒ x̄1 =
1

10

10∑
i=1

xi1 =
1

10
(3.17 + 3.45 + · · ·+ 2.05) = 3.20

⇒ x̄2 =
1

10

10∑
i=1

xi2 =
1

10
(3.45 + 2.35 + · · ·+ 4.36) = 3.80

Thus, the sample mean vector is: x̄ =

[
3.20
3.80

]
.

sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k); j, k = 1, 2

⇒ s11 =
1

10− 1

10∑
i=1

(xi1 − x̄1)2 = 0.678 and s22 =
1

10− 1

10∑
i=1

(xi2 − x̄2)2 = 0.645

⇒ s12 =
1

10− 1

10∑
i=1

(xi1 − x̄1)(xi2 − x̄2) = −0.109

Thus, the sample covariance matrix is:

S =

[
0.678 −0.109
−0.109 0.645

]
⇒ S−1 =

[
1.517 0.257
0.257 1.594

]

1. Hypothesis: H0 : µ =

[
3
5

]
vs H1 : µ 6=

[
3
5

]
.
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2. Critical value: c∗ =
(n− 1)p

n− p
Fα(p, n − p) =

(10− 1)2

10− 2
F0.05(2, 10 − 2) = 2.25(4.459) =

10.033.

3. Test statistic: T 2 = n(x̄− µ0)
′S−1(x̄− µ0)

⇒ T 2 = 10

[
3.20− 3
3.80− 5

]′ [
1.517 0.257
0.257 1.594

] [
3.20− 3
3.80− 5

]
= 10

[
0.2 −1.2

] [ 1.517 0.257
0.257 1.594

] [
0.2
−1.2

]
= 22.322

4. Since T 2 = 22.322 > c∗ = 10.033, H0 is rejected. Thus, the sample does not appear to
come from a food with mean nutrient [3, 5]′ at 5% level of significance.

4.2 Confidence Region for the Mean Vector µ

Ordinarily, instead of testing H0 : µ = µ0, it is preferable to find regions of µ values that are
plausible in the light of the observed data.

Univariate case:

For a random sample of n observations x1, x2, · · · , xn is drawn from a normal population
with mean µ and variance σ2, the (1− α)100% confidence interval for µ is given by∣∣∣∣ x̄− µs/

√
n

∣∣∣∣ ≤ tα/2(n− 1)

which is equivalent to

t2 =
(x̄− µ)2

s2/n
= n(x̄− µ)(s2)−1(x̄− µ) ≤ Fα(1, n− 1).

Multivariate case:

A (1− α)100% confidence region for the p dimensional multivariate normal population with
mean µ is given by

n(x̄− µ)′S−1(x̄− µ) ≤ (n− 1)p

n− p
Fα(p, n− p).

The confidence region is an ellipsoid centered at the sample mean vector x̄ = (x̄1, x̄2, · · · , x̄p)′.
This implies, the boundary of the ellipsoid is

(x̄− µ)′S−1(x̄− µ) =
c∗

n
where c∗ =

(n− 1)p

(n− p)
Fα(p, n− p).

Beginning at the center x̄, the half lengths of the axes are given by

√
λjc =

√
λj
c∗

n
=

√
λj

(n− 1)p

(n− p)n
Fα(p, n− p)

in the direction of ej which is the normalized eigenvector corresponding to the eigenvalue λj ;
j = 1, 2, · · · , p of S.
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Example 4.2. Recall example 4.1. The 95% confidence region for µ = (µ1, µ2)
′ is given by

(x̄− µ)′S−1(x̄− µ) ≤ c∗

n

⇒
[

3.20− µ1
3.80− µ2

]′ [
1.517 0.257
0.257 1.594

] [
3.20− µ1
3.80− µ2

]
≤ 10.033

10

This confidence region for µ = (µ1, µ2)
′ will be an equation of ellipse like the form

`1(x1 − µ1)2 + `2(x2 − µ2)2 + `3(x1 − µ1)(x2 − µ2) ≤ `4.

For all points inside the ellipse (satisfying the equation), H0 will not be rejected. For example,
we can easily check that µ = (3, 5)′ does not lie in the region.

Let us plot of the confidence region. First, let us find the eigenvalues of S. That is,

|S − λI| = 0⇒
∣∣∣∣ 0.678− λ −0.109
−0.109 0.645− λ

∣∣∣∣ = 0

This gives the quadratic equation λ2 − 1.323λ + 0.425 = 0. Hence, the eigenvalues are
λ1 = 0.774 and λ2 = 0.550.

Second, let us obtain the orientations (eigenvectors) associated with both eigenvalues. That
is, Sxj = λjxj ; j = 1, 2

For λ1 = 0.774: Sx1 = λ1x1

⇒
[

0.678 −0.109
−0.109 0.645

] [
x11
x21

]
= 0.774

[
x11
x21

]
⇒ x1 =

[
1.00
−0.88

]

Thus, the orientation of the major axis is: e1 =

[
0.751
−0.661

]
.

For λ2 = 0.550: Sx2 = λ1x2

⇒
[

0.678 −0.109
−0.109 0.645

] [
x12
x22

]
= 0.550

[
x12
x22

]
⇒ x2 =

[
1.000
1.174

]

Thus, the orientation of the minor axis is: e1 =

[
0.648
0.761

]
.

The half lengths of the major and minor axes are
√
λ1c =

√
0.774(1.0033) = 0.881 and√

λ2c =
√

0.550(1.0033) = 0.743, respectively.

Beginning at x̄ = [3.20, 3.80]′, the plot is as follows.

Inserttheplothere
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4.3 Simultaneous Confidence Statements

Once the null hypothesis H0 : µ = µ0 is rejected, then the component which is responsible
for rejection has to be determined.

It would be erroneous to carry out univariate t tests for this purpose because the number
of tests and the correlation among the responses would lead to a greatly different values of
significance level (α) than the one chosen for the critical value of the t distribution. For
example, let X ∼ N6(µ,Σ) and assume each component mean equals to a specified value.
There would be p = 6 univariate t-tests. Let α = 0.05. Then, the probability of not rejecting
the hypothesis of no difference from the specified value in each case would be 1− 0.05 = 0.95.
If the tests are independent of each other, the probability of not rejecting H0 in all of the
6 cases is (0.95)(0.95) · · · (0.95) = (0.95)6 = 0.7351. The probability of rejecting at least
one hypothesis of no difference from the specified value is 1 − 0.7351 = 0.2649 = α for a
univariate t-test. This means that type I error is committed 26% of the time in testing all
the 6 univariate tests. In general, the probability of committing type I error increases as the
number of components is larger.

Simultaneous confidence statements are proposed to avoid such drawback of univariate confidence
intervals by using linear combinations of the components. Recall, if X follows an Np(µ,Σ),
then the linear combination of the components of X, a′X = a1X1 + a2X2 + · · ·+ apXp, has
also a normal distribution with mean a′µ and variance a′Σa, that is, a′X ∼ N (a′µ,a′Σa).
Consequently, a′X̄ ∼ N (a′µ,a′Σa/n).

In constructing the simultaneous confidence statements, all the separate confidence intervals
hold simultaneously a specified high confidence level (low significance level). That is, a
simultaneous confidence interval uses linear combination of the components of µ which is
given by a set of a′µ values such that the observed t2 is relatively small for all choices of a.

Then, a (1− α)100% simultaneous confidence interval for a′µ is

(a′x̄− a′µ)2

a′Sa/n
≤ c∗ ⇒

∣∣∣∣∣a′x̄− a′µ√
a′Sa/n

∣∣∣∣∣ ≤ √c∗ ⇒ (a′x̄±
√
c∗
√
a′Sa/n)

where a′x̄ is an estimate of a′µ, and a′Sa/n is an estimate of cov(a′x̄).

In particular, if a′ = (0, 0, · · · , 1︸︷︷︸
jth position

, · · · , 0), then the confidence interval for a′µ = µj is

(
x̄j ±

√
c∗
√
sjj
n

)
where c∗ =

(n− 1)p

n− p
Fα(p, n− p).

Example 4.3. Consider again example 4.1. Find the 95% confidence interval for mean
nutrientA andB. The sample mean vector and sample variance-covariance matrix, respectively,
were

x̄ =

[
3.20
3.80

]
and S =

[
0.678 −0.109
−0.109 0.645

]
.

Also, the critical value for the Hotelling’s T 2 was c∗ =
(10− 1)2

10− 2
F0.05(2, 10− 2) = 10.033.
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A 95% simultaneous confidence interval interval for µ1 is(
x̄1 ±

√
c∗
√
s11
n

)
=

(
3.20±

√
10.033

√
0.678

10

)
= (2.375, 4.025).

Similarly, a 95% simultaneous confidence interval interval for µ2 is(
x̄2 ±

√
c∗
√
s22
n

)
=

(
3.80±

√
10.033

√
0.645

10

)
= (2.995, 4.650).

Note that µ01 = 3 is found inside in the confidence interval for µ1 while µ02 = 5 is found
outside the confidence interval for µ2. Hence, the second component (nutrient B) is responsible
for the rejection of H0 : µ = (3, 5)′.

4.4 The Bonferroni Method of Multiple Comparisons

The Bonferroni confidence interval makes an adjustment on the univariate t-test critical value,
not to increase type I error, by considering the total number of confidence intervals required.
The (1− α)100% Bonferroni confidence interval for µj is(

x̄j ± tα/2p(n− 1)

√
sjj
n

)
where p is the number of confidence intervals required.

Example 4.4. Find the Bonferroni confidence interval based on the data given in example 4.1.
t 0.05
2(2)

(10− 1) = t0.0125(9) = 3.111.

µ1 :

(
3.2± 3.111

√
0.678

10

)
= (2.39, 4.01) and µ2 :

(
3.8± 3.111

√
0.645

10

)
= (3.01, 4.59)

Again using the Bonferroni confidence interval, the second component (nutrient B) is responsible
for the rejection of H0 : µ = (3, 5)′.

4.5 Likelihood-Ratio Test

Likelihood-ratio test is a general principle for constructing test procedures. It is the ratio of
the restricted likelihood function to the unrestricted likelihood function.

Recall for a random sample Xi; i = 1, 2, · · · , n from an Np(µ,Σ), the likelihood function is:

`(µ,Σ) =
1

(2π)
np
2 |Σ|

n
2

exp

[
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

]
.

Also recall the ML estimate of µ is µ̂ = x̄ and that of Σ is Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′.
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The exponent of the likelihood function can be

n∑
i=1

(xi − µ)′Σ−1(xi − µ) = tr


n∑
i=1

(xi − µ)′︸ ︷︷ ︸
A1×p

Σ−1(xi − µ)︸ ︷︷ ︸
Bp×1


= tr

{
n∑
i=1

Σ−1(xi − µ)(xi − µ)′

}
as tr(AB) = tr(BA)

= tr

{
Σ−1

n∑
i=1

(xi − µ)(xi − µ)′

}
.

Thus,

`(µ,Σ) =
1

(2π)
np
2 |Σ|

n
2

exp

[
−1

2
tr

{
Σ−1

n∑
i=1

(xi − µ)(xi − µ)′

}]
.

The (unrestricted) maximum of the likelihood function is

`(µ̂, Σ̂) =
1

(2π)
np
2 |Σ̂|

n
2

exp

[
−1

2
tr

{
Σ̂−1

n∑
i=1

(xi − x̄)(xi − x̄)′

}]

=
1

(2π)
np
2 |Σ̂|

n
2

exp

[
−1

2
tr
(
nΣ̂−1Σ̂

)]
=

1

(2π)
np
2 |Σ̂|

n
2

exp

[
−1

2
n tr (Ip)

]
=

1

(2π)
np
2 |Σ̂|

n
2

exp

[
−1

2
np

]
.

When the null hypothesis holds, there is no need of searching for µ because it is given as
fixed. Hence, under H0 : µ = µ0, the restricted likelihood function is

`(µ0,Σ0) =
1

(2π)
np
2 |Σ0|

n
2

exp

[
−1

2
tr

{
Σ−10

n∑
i=1

(xi − µ0)(xi − µ0)
′

}]

=
1

(2π)
np
2 |Σ0|

n
2

exp

[
−1

2
tr
(
nΣ−10 Σ0

)]
=

1

(2π)
np
2 |Σ0|

n
2

exp

[
−1

2
n tr (Ip)

]
=

1

(2π)
np
2 |Σ0|

n
2

exp

[
−1

2
np

]
.

Therefore, the likelihood-ratio is

Λ =
`(µ0,Σ0)

`(µ̂, Σ̂)
=

[
|Σ̂|
|Σ0|

]n
2

⇒ Λ
2
n =

|Σ̂|
|Σ0|

.
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This likelihood-ratio test statistic Λ
2
n is called Wilks’ Lambda. The null hypothesis H0 : µ =

µ0 should be rejected if the value of Λ is too small, that is, if

Λ =

[
|Σ̂|
|Σ0|

]n
2

< cα

where cα is the lower (100α)th percentile of the distribution of Λ. But,

Λ
2
n =

[
1 +

T 2

n− 1

]−1

where T 2 ∼ (n− 1)p

n− p
F (p, n−p). Rejecting H0 for small values of Λ

2
n is equivalent to rejecting

H0 for large values of T 2.

4.6 Large Sample Inference about µ

When the sample size is large, tests of hypothesis and confidence intervals can be constructed
without the assumption of a normal population.

Univariate case:

Suppose a random sample of large size n is drawn from any population with mean µ and
variance σ2. The test statistic for testing H0 : µ = µ0 is

Z =
X̄ − µ0
σ/
√
n
∼ N (0, 1).

Rejecting H0 when |Z| is large is equivalent to rejecting H0 if Z2 is large. That is,

Z2 =

(
X̄ − µ0
σ/
√
n

)2

= (X̄ − µ0)
[
σ2

n

]−1
(X̄ − µ0)

= n(X̄ − µ0)(σ2)−1(X̄ − µ0) ∼ χ2(1)

If σ is unknown, s is used instead.

Multivariate case:

All large sample multivariate inferences are based on the χ2 distribution. When n−p is large,

H0 : µ = µ0 will be rejected if T 2 = n(x̄−µ0)
′S−1(x̄−µ0) > χ2

α(p) since
(n− 1)p

n− p
Fα(p, n−p)

and χ2
α(p) are approximately equal for large sample size.

The (1 − α)100% simultaneous and Bonferroni confidence intervals for a′µ are given by
(a′x̄±

√
χ2
α(p)

√
a′Sa/n) and (a′x̄± zα/2p

√
a′Sa/n), respectively.
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Chapter 5

Comparison of Several Multivariate
Means

5.1 Dependent Samples

5.1.1 Paired Comparison

In paired comparison, the presence and absence of a single treatment or two treatments are
compared by assigning both treatments to the same (e.g., persons) or identical (e.g., plots)
experimental units. The paired responses are then analysed by computing their differences.

Univariate case:

Let Xi1 and Xi2 denote the responses to treatment I (response before treatment) and to
treatment II (after treatment) for the ith; i = 1, 2, · · · , n trial (experimental unit). That is,
(Xi1, Xi2) are responses recorded on the ith pair of like units. The differential effects of the
treatments is Di = Xi1 −Xi2; i = 1, 2, · · · , n.

Let the differences Di; i = 1, 2, · · · , n represent independent observations from N (µd, σ
2
d).

Thus, D̄ ∼ N (µd, σ
2
d/n). The hypothesis to be tested is H0 : µd = 0 versus H1 : µd 6= 0.

Then, the test statistic is

t =
D̄ − µd
sd/
√
n
∼ t(n− 1)

where D̄ =
1

n

n∑
i=1

Di and sd =
1

n− 1

n∑
i=1

(Di − D̄)2.

Consequently, H0 should be rejected if the observed |t| > tα/2(n− 1).

Multivariate case:

Given p responses, 2 treatments and n experimental units. Let X1ij denote the jth response
of the ith unit to treatment I (response before treatment) and let X2ij denote the jth response
of the ith unit to treatment II (response after treatment).
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Pre-treatment matrix Post-treatment matrix
Var 1 Var 2 · · · Var p Var 1 Var 2 · · · Var p
X111 X112 · · · X11p X211 X212 · · · X21p

X121 X122 · · · X12p X221 X222 · · · X22p
...

...
. . .

...
...

...
. . .

...
X1n1 X1n2 · · · X1np X2n1 X2n2 · · · X2np

The analysis is performed on the differences (before treatment - after treatment) of the type
Dij = D1ij −D2ij , j = 1, 2, · · · , p; i = 1, 2, · · · , n.

Let the differencesD1,D2, · · · ,Dn represent independent observation vectors fromNp(µd,Σd).
Thus, D̄ ∼ Np(µd,Σd/n). The hypothesis of interest is H0 : µd = 0 (no treatment effect for
all p components) versus H1 : µd 6= 0. Then the test statistic is

T 2 = n(D̄ − µd)′(Sd)−1(D̄ − µd) ∼
(n− 1)p

n− p
F (p, n− p)

where D̄ =
1

n

n∑
i=1

Di and Sd =
1

n

n∑
i=1

(Di − D̄)(Di − D̄)′.

Given the observed differences d′i = (di1, di2, · · · , dip); i = 1, 2, · · · , n, H0 : µd = 0 is rejected
if the observed

T 2 = nd̄′(Sd)
−1d̄ >

(n− 1)p

n− p
Fα(p, n− p)

where d̄ =
1

n

n∑
i=1

di and Sd =
1

n− 1

n∑
i=1

(di − d̄)(di − d̄)′.

Note that d̄ =


d̄1
d̄2
...
d̄p

 and Sd =


sd1d1 sd1d2 · · · sd1dp
sd2d1 sd2d2 · · · sd2dp

...
...

. . .
...

sdpd1 sdpd2 · · · sdpdp


A (1−α)100% confidence region for µd is n(d̄−µd)′(Sd)−1(d̄−µd) ≤ c∗ which is an ellipsoid
passing through d̄. To plot the confidence ellipsoid, the sample covariance matrix of the
sample differences, Sd, is used.

A (1− α)100% simultaneous confidence interval for a linear combination a′µd is given by(
a′d̄±

√
c∗
√
a′Sda/n

)
where a′d̄ is an estimate of a′µd, and a′Sda/n is an estimate of cov(a′d̄).

Particularly, a (1−α)100% simultaneous confidence interval for the individual mean differences
µdj ’s are given by (

d̄j ±
√
c∗
√
sdjdj
n

)
; j = 1, 2, · · · , p.
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Also, a (1 − α)100% Bonferroni confidence interval for the individual mean differences µdj ’s
are given by (

d̄j ± tα/2p(n− 1)

√
sdjdj
n

)
; j = 1, 2, · · · , p.

Example 5.1. It is felt that three drugs (X1, X2 and X3) may lead to changes in the level
of a certain biochemical compound found in the brain. Thirty mice of the same stain were
randomly divided into three groups and received the drugs. The amount of the compound
(in micrograms per gram of brain tissue) is recorded before and after the treatments. The
responses are in given in the following table. Test the hypothesis of no treatment effect at
5% level of significance.

Before treatment After treatment
x1i1 x1i2 x1i3 x2i1 x2i2 x2i3
1.21 0.61 0.70 1.26 0.50 0.81
0.92 0.43 0.71 1.07 0.39 0.69
0.80 0.35 0.71 1.33 0.24 0.70
0.85 0.48 0.68 1.39 0.37 0.72
0.98 0.42 0.71 1.38 0.42 0.71
1.15 0.52 0.72 0.98 0.49 0.70
1.10 0.50 0.75 1.41 0.41 0.70
1.02 0.53 0.70 1.30 0.47 0.67
1.18 0.45 0.70 1.22 0.29 0.68
1.09 0.40 0.69 1.00 0.30 0.70

The necessary calculations are obtained as follows. Here d∗ij = dij − d̄j . Also the last row is
the sum.

di1 di2 di3 d∗2i1 d∗2i2 d∗2i3 d∗i1d
∗
i2 d∗i1d

∗
i3 d∗i2d

∗
i3

-0.050 0.110 -0.110 0.023716 0.000841 0.011881 0.004466 -0.016786 -0.003161
-0.150 0.040 0.020 0.002916 0.001681 0.000441 -0.002214 0.001134 -0.000861
-0.530 0.110 0.010 0.106276 0.000841 0.000121 -0.009454 -0.003586 0.000319
-0.540 0.110 -0.040 0.112896 0.000841 0.001521 -0.009744 0.013104 -0.001131
-0.400 0.000 0.000 0.038416 0.006561 0.000001 0.015876 -0.000196 -0.000081
0.170 0.030 0.020 0.139876 0.002601 0.000441 -0.019074 0.007854 -0.001071

-0.310 0.090 0.050 0.011236 0.000081 0.002601 -0.000954 -0.005406 0.000459
-0.280 0.060 0.030 0.005776 0.000441 0.000961 0.001596 -0.002356 -0.000651
-0.040 0.160 0.020 0.026896 0.006241 0.000441 0.012956 0.003444 0.001659
0.090 0.100 -0.010 0.086436 0.000361 0.000081 0.005586 -0.002646 -0.000171

-2.040 0.810 -0.010 0.554440 0.020490 0.018490 -0.000960 -0.005440 -0.004690

d̄j =
1

n

n∑
i=1

dij =
1

10

10∑
i=1

dij ; j = 1, 2, 3
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⇒ d̄1 =
1

10

10∑
i=1

di1 =
1

10
(−0.204) = −0.204

⇒ d̄2 =
1

10

10∑
i=1

di2 =
1

10
(0.810) = 0.081

⇒ d̄3 =
1

10

10∑
i=1

di3 =
1

10
(−0.01) = −0.001

⇒ d̄ =

 −0.204
0.081
−0.001


sdjdk =

1

n− 1

n∑
i=1

(dij − d̄j)(dik − d̄k) =
1

10− 1

10∑
i=1

(dij − d̄j)(dik − d̄k); j, k = 1, 2, 3

⇒ sd1d1 =
1

9

10∑
i=1

(di1 − d̄1)2 =
1

9
(0.55444) = 0.06160

⇒ sd2d2 =
1

9

10∑
i=1

(di2 − d̄2)2 =
1

9
(0.02049) = 0.00228

⇒ sd3d3 =
1

9

10∑
i=1

(di3 − d̄3)2 =
1

9
(0.01849) = 0.00205

⇒ sd1d2 =
1

9

10∑
i=1

(di1 − d̄1)(di2 − d̄2) =
1

9
(−0.00096) = −0.00011

⇒ sd1d3 =
1

9

10∑
i=1

(di1 − d̄1)(di3 − d̄3) =
1

9
(−0.00544) = −0.00060

⇒ sd2d3 =
1

9

10∑
i=1

(di2 − d̄2)(di3 − d̄3) =
1

9
(−0.00469) = −0.00052

Sd =

 0.06160 −0.00011 −0.00060
−0.00011 0.00228 −0.00052
−0.00060 −0.00052 0.00205

⇒ S−1d =

 16.28866 1.98818 5.27173
1.98818 465.77088 118.72867
5.27173 118.72867 519.46436


The hypothesis to be tested is H0 : µd = 0 vs H1 : µd 6= 0.

T 2 = nd̄′(Sd)
−1d̄

⇒ T 2 = 10

 −0.204
0.081
−0.001

′  16.28866 1.98818 5.27173
1.98818 465.77088 118.72867
5.27173 118.72867 519.46436

 −0.204
0.081
−0.001

 = 36.515
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The critical value is c∗ =
(n− 1)p

n− p
Fα(p, n− p) =

(10− 1)3

10− 3
F0.05(3, 10− 3) = 16.779. There is

a significant treatment effect at 5% level of significance.

The next question is which of the three drugs (X1, X2 or X3) leads to changes in the level
of the biochemical compound found in the brain? To answer this question, the simultaneous
confidence intervals for the individual mean differences µdj need to be constructed, which is
given by (

d̄j ±
√
c∗
√
sdjdj
n

)
; j = 1, 2, 3

Hence, the 95% confidence intervals are:

µd1 :

(
d̄1 ±

√
c∗
√
sd1d1
n

)
=

(
−0.204±

√
16.779

√
0.06160

10

)
= (−0.5255, 0.1175)

µd2 :

(
d̄2 ±

√
c∗
√
sd2d2
n

)
=

(
0.081±

√
16.779

√
0.00228

10

)
= (0.0191, 0.1429)

µd3 :

(
d̄3 ±

√
c∗
√
sd3d3
n

)
=

(
−0.001±

√
16.779

√
0.00205

10

)
= (−0.0596, 0.0576)

The confidence interval for µd2 does not include zero. Thus, H0 : µd = 0 was rejected due
to the second component (X2). In other words, it is the second drug (X2) that led to a
significant change in the level of the biochemical compound found in the brain at 5% level of
significance.

5.1.2 A Repeated Measures Design for Comparing Treatments

A repeated measures design is another generalization of the univariate t statistic in which q
treatments are compared with respect to a single response measured from the same (identical)
sampling units over time or space. Each experimental unit receives each treatment once over
successive period of time. The name repeated measures stems from the fact that all treatments
are administered to each unit.

Let Xik be the response of the ith; i = 1, 2, · · · , n unit to the kth; k = 1, 2, · · · , q treatment.

Item Treatment 1 Treatment 2 · · · Treatment q
1 X11 X12 · · · X1q X ′1
2 X21 X22 · · · X1q X ′2
...

...
...

. . .
...

...
n Xn1 Xn2 · · · Xnq X ′q

The hypothesis of interest is whether µ1 = µ2 = · · · = µq (no treatment effect). For
comparative purposes, contrasts of the components of µ = E(Xi) are considered. These
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could be 
µ1 − µ2
µ1 − µ3
µ1 − µ4

...
µ1 − µq


︸ ︷︷ ︸

(q−1)×1

=


1 −1 0 0 · · · 0 0
1 0 −1 0 · · · 0 0
1 0 0 −1 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 0 −1


︸ ︷︷ ︸

(q−1)×q


µ1
µ2
µ3
...
µq


︸ ︷︷ ︸
q×1

= Aµ

or 
µ1 − µ2
µ2 − µ3
µ3 − µ4

...
µq−1 − µq


︸ ︷︷ ︸

(q−1)×1

=


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1


︸ ︷︷ ︸

(q−1)×q


µ1
µ2
µ3
...
µq


︸ ︷︷ ︸
q×1

= Bµ

Since each row is a contrast and the q − 1 rows are linearly independent, both A and B are
contrast matrices. If Aµ = Bµ = 0, then µ1 = µ2 = · · · = µq. Hence, the hypothesis of no
difference in treatments (equal treatment means) is Aµ = 0 for any choice of contrast matrix
A.

Consider an Nq(µ,Σ) population. If A is a contrast matrix, then AX ∼ Nq−1(Aµ,AΣA′).
Hence, AX̄ ∼ Nq−1(Aµ,AΣA′/n).

Therefore, for testing H0 : Aµ = 0 vs H1 : Aµ 6= 0, the T 2 test statistic, which does not
depend on the particular choice of A, is

T 2 = n(AX̄ −Aµ)′(ASA′)−1(AX̄ −Aµ) ∼ (n− 1)(q − 1)

n− (q − 1)
F [q − 1, n− (q − 1)].

As usual, H0 : Aµ = 0 is rejected if the observed T 2 = n(Ax̄)′(ASA′)−1(Ax̄) > c∗ where

c∗ =
(n− 1)(q − 1)

n− (q − 1)
Fα[q − 1, n− (q − 1)].

The (1 − α)100% simultaneous confidence interval for a single contrast a′µ for any contrast
vector a of interest are

(a′x̄±
√
c∗
√
a′Sa/n)

where a′x̄ is an estimate of a′µ, and a′Sa/n is an estimate of cov(a′x̄).

Particularly, the confidence interval for the difference of the jth and kth treatment means,
µj − µk, is obtained by letting a′ = (0, · · · , 0, 1︸︷︷︸

jth position

, 0, · · · , 0, −1︸︷︷︸
kth position

, 0, · · · , 0):

[
(x̄j − x̄k)±

√
c∗

√
sjj − 2sjk + skk

n

]
; j 6= k.
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Also, a (1 − α)100% Bonferroni confidence interval for the difference in treatment means
µj − µk are given by (

d̄j ± tα/[q(q−1)](n− 1)

√
sdjdj
n

)
; j = 1, 2, · · · , p.

Example 5.2. A researcher conducted three indices measuring severity of heart attacks. The
values of the indices for n = 40 heart-attack patients arriving at a hospital emergency room
produced the following summary statistics.

x̄ =

 46.1
57.3
50.4

 and S =

 101.3 63.0 71.0
63.0 80.2 55.6
71.0 55.6 97.4


Test the equality of the mean indices and judge the differences in pairs of mean indices.

Since there are q = 3 treatments, let A =

[
1 −1 0
1 0 −1

]
. Then the hypothesis to be tested

is

H0 : Aµ = 0⇒ H0 :

[
µ1 − µ2
µ1 − µ3

]
=

[
0
0

]
H1 : Aµ 6= 0⇒ H1 :

[
µ1 − µ2
µ1 − µ3

]
6=
[

0
0

]
The test statistic is T 2 = n(Ax̄)′(ASA′)−1(Ax̄).

Ax̄ =

[
−11.2
−4.3

]
, ASA′ =

[
55.5 22.9
22.9 56.7

]
⇒ (ASA′)−1 =

[
0.02162 −0.00873
−0.00873 0.02116

]

T 2 =
[
−11.2 −4.3

] [ 0.02162 −0.00873
−0.00873 0.02116

] [
−11.2
−4.3

]
= 90.49

c∗ =
(n− 1)(q − 1)

n− (q − 1)
Fα[q − 1, n− (q − 1)] =

(40− 1)(3− 1)

40− (3− 1)
F0.05[3− 1, 40− (3− 1)] = 6.66

Hence, H0 : Aµ = 0 is rejected. The mean indices are not all equal.

The 95% simultaneous confidence interval for µj − µk is[
(x̄j − x̄k)±

√
c∗

√
sjj − 2sjk + skk

n

]
; j 6= k
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µ1 − µ2 :

[
(x̄1 − x̄2)±

√
c∗

√
s11 − 2s12 + s22

n

]
[
−11.2±

√
6.66

√
101.3− 2(63.0) + 80.2

40

]
= (−14.23986,−8.16014)

µ1 − µ3 :

[
(x̄1 − x̄3)±

√
c∗

√
s11 − 2s13 + s33

n

]
[
−4.3±

√
6.66

√
101.3− 2(71.0) + 97.4

40

]
= (−7.37255,−1.22745)

µ2 − µ3 :

[
(x̄2 − x̄3)±

√
c∗

√
s22 − 2s23 + s33

n

]
[

6.9±
√

6.66

√
80.2− 2(55.6) + 97.4

40

]
= (3.57500, 10.22500)

All the intervals do not contain zero. Thus, all mean indices are significantly different from
each other (µ2 > µ3 > µ1).

5.2 Independent Samples

5.2.1 Comparing Mean Vectors from Two Populations

Univariate case:

• X11, X12, · · · , X1n1 ∼ N (µ1, σ
2
1)

• X21, X22, · · · , X2n2 ∼ N (µ2, σ
2
2)

• The two samples are independent.

The hypothesis to be tested is H0 : µ1 = µ2 vs H1 : µ1 6= µ1. Assuming σ21 = σ22, the test
statistic is

t =
(X̄1 − X̄2)− (µ1 − µ2)√(

1

n1
+

1

n2

)
s2pooled

∼ t(n1 + n2 − 2)

where s2pooled =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
. Reject H0 if the observed |t| > tα/2(n1 + n2 − 2).

Multivariate case:

• X11, X12, · · · , X1n1 ∼ Np(µ1,Σ1)

• X21, X22, · · · , X2n2 ∼ Np(µ2,Σ2).

• X11, X12, · · · , X1n1 are independent of X21, X22, · · · , X2n1 .

The data layout,
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Population 1 Population 2
X111 X112 · · · X11p →X ′11 X211 X212 · · · X21p →X ′21
X121 X122 · · · X12p →X ′12 X221 X222 · · · X22p →X ′22

...
...

. . .
...

...
...

...
. . .

...
...

X1n11 X1n12 · · · X1n1p →X ′1n1
X2n21 X2n22 · · · X2n2p →X ′2n2

If n1 and n2 are small, then both populations should be multivariate normal and they should
have the same covariance matrix (i.e., Σ1 = Σ2). The second assumption is much stronger
than its univariate counterpart because the several pairs of variances and covariances must
be nearly equal.

If Σ1 = Σ2 = Σ, then both S1 =
1

n1 − 1

n1∑
i=1

(X1i−X̄1)(X1i−X̄1)
′ and S2 =

1

n2 − 1

n2∑
i=1

(X2i−

X̄2)(X2i − X̄2)
′ estimate Σ. Consequently, both samples can be pooled to estimate the

common covariance Σ. That is, Spooled =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
estimates Σ.

To test H0 : µ1 = µ2 vs H1 : µ1 6= µ2, the squared statistical distance from X̄1 − X̄2

to µ1 − µ2 is considered. As E(X̄1 − X̄2) = (µ1 − µ2), (X̄1 − X̄2) estimates (µ1 − µ2).
Since the two samples are independent, Cov(X̄1, X̄2) = 0. This implies Cov(X̄1 − X̄2) =

Cov(X̄1) + Cov(X̄2) =
1

n1
Σ +

1

n2
Σ =

(
1

n1
+

1

n2

)
Σ. Thus,

(
1

n1
+

1

n2

)
Spooled estimates

Cov(X̄1 − X̄2) =

(
1

n1
+

1

n2

)
Σ.

The test statistic is, therefore,

T 2 =
[
(X̄1 − X̄2)− (µ1 − µ2)

]′ [( 1

n1
+

1

n2

)
Spooled

]−1 [
(X̄1 − X̄2)− (µ1 − µ2)

]
.

Since T 2 ∼ (n1 + n2 − 2)p

n1 + n2 − p− 1
F (p, n1 + n2 − p− 1), H0 will be rejected if the observed T 2 > c∗

where c∗ =
(n1 + n2 − 2)p

n1 + n2 − p− 1
Fα(p, n1 + n2 − p− 1).

A (1− α)100% confidence region for µ1 − µ2 is given by

[(x̄1 − x̄2)− (µ1 − µ2)]
′
[(

1

n1
+

1

n2

)
Spooled

]−1
[(x̄1 − x̄2)− (µ1 − µ2)] ≤ c∗.

which is an ellipsoid centered at (x̄1−x̄2). The boundary of the ellipsoid is c =

(
1

n1
+

1

n2

)
c∗.

The half lengths of the axes are
√
λj

√(
1

n1
+

1

n2

)
c∗; j = 1, 2, · · · , p in the direction of ej

which is the normalized eigenvector associated with the eigenvalue λj of Spooled.

A (1− α)100% simultaneous confidence interval for a′(µ1 − µ2) is[
a′(x̄1 − x̄2)±

√
c∗

√(
1

n1
+

1

n2

)
a′Spooleda

]
.
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If a′ = (0, 0, · · · , 1︸︷︷︸
jth position

, · · · , 0), a′(µ1 − µ2) = µ1j − µ2j , a′(x̄1 − x̄2) = x̄1j − x̄2j and

a′Spooleda = sjj . Thus, a (1− α)100% simultaneous confidence interval for µ1j − µ2j is[
(x̄1j − x̄2j)±

√
c∗

√(
1

n1
+

1

n2

)
sjj

]

where sjj is the jth diagonal entry of the pooled covariance matrix, Spooled.

Example 5.3. Given the following data on academic performance of students (in preparatory
school out of 100 and in university out of 4.00). Test the equality of the population mean
vectors between the two groups.

Female Male
Preparatory University Preparatory University

97 3.40 86 3.90
95 3.45 84 3.75
85 3.50 70 2.25

80 3.05
75 2.80

Summary statistics

Female: x̄1 =

[
92.3333
3.4500

]
and S1 =

[
41.3333 0.2500
0.2500 0.0025

]

Male: x̄2 =

[
79.0000
3.1500

]
and S2 =

[
43.0000 4.4125
4.4125 0.4663

]
Spooled =

[
42.4444 3.0250
3.0250 0.3117

]
⇒ S−1pooled =

[
0.0764 −0.7415
−0.7415 10.4048

]
The observed test statistic is:

T 2 =

(
1

n1
+

1

n2

)−1
(x̄1 − x̄2)

′S−1pooled(x̄1 − x̄2)

=

(
1

3
+

1

5

)−1 [
13.3333 0.3000

] [ 0.0764 −0.7415
−0.7415 10.4048

] [
13.3333
0.3000

]
= 16.0999

Critical value: c∗ =
(6)2

5
F0.05(2, 5) = 13.8866. Reject H0 : µ1 = µ2.

A (1− α)100% simultaneous confidence interval for µ1j − µ2j is[
(x̄1j − x̄2j)±

√
c∗

√(
1

n1
+

1

n2

)
sjj

]

where sjj is the jth diagonal entry of the pooled covariance matrix, Spooled.
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For component 1 (preparatory score):

µ11 − µ21 :

[
(x̄11 − x̄21)±

√
c∗

√(
1

n1
+

1

n2

)
s11

]
(

13.3333±
√

13.8866

√(
1

3
+

1

5

)
42.4444

)
= (−4.3967, 31.0633)

For component 2 (university score):

µ12 − µ22 :

[
(x̄12 − x̄22)±

√
c∗

√(
1

n1
+

1

n2

)
s22

]
(

0.3000±
√

13.8866

√(
1

3
+

1

5

)
0.3117

)
= (−1.2194, 1.8194)

Both simultaneous confidence intervals contain the value zero indicating that there is no
significant difference in the mean vectors between females and males. But, this is in contradiction
with the test of H0 : µ1 = µ2. The possible reasons may be:

• The multivariate normality of the observation vectors might be violated because of the
small sample sizes.

• The assumption of equality of the covariance matrices (Σ1 = Σ2) may not hold.

5.2.2 Comparison of Several Multivariate Population Means

Often, more than two populations need to be compared. Random samples are collected from
each of g populations.

Univariate ANOVA:

• Let X`1, X`2, · · · , X`n`
be a random sample from an N (µ`, σ

2); ` = 1, 2, · · · , g.

• The samples from different populations are independent.

• All populations have a common variance, σ2.

The null hypothesis of equality of means H0 : µ1 = µ2 = · · · = µg. Each population mean
µ`; ` = 1, 2, · · · , g can be considered as a sum of an overall mean (µ) and a component
specific to each population (τ`), that is, µ` = µ + τ` where τ` = µ` − µ is the `th population
(treatment) effect. The null hypothesis now becomes H0 : τ1 = τ2 = · · · = τg = 0.

Since the response X`i ∼ N (µ`, σ
2), it can be expressed as X`i = µ` + e`i = µ+ τ` + e`i where

the random error e`i are independent N (0, σ2). A constraint
g∑̀
=1

n`τ` = 0 is imposed to define

the model parameters uniquely.
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Hence, the analysis of variance is based on the decomposition of each observed value x`i,

x`i = x̄+ (x̄` − x̄) + (x`i − x̄`)
x`i − x̄ = (x̄` − x̄) + (x`i − x̄`)

(x`i − x̄)2 = (x̄` − x̄)2 + 2(x̄` − x̄)(x`i − x̄`) + (x`i − x̄`)2

Taking the summation over i,

n∑̀
i=1

(x`i − x̄)2 = n`(x̄` − x̄)2 + 2(x̄` − x̄)

n∑̀
i=1

(x`i − x̄`) +

n∑̀
i=1

(x`i − x̄`)2

Since
n∑̀
i=1

(x`i − x̄`) =
n∑̀
i=1

x`i − n`x̄` = 0,

n∑̀
i=1

(x`i − x̄)2 = n`(x̄` − x̄)2 +

n∑̀
i=1

(x`i − x̄`)2.

Now taking the summation over `,

g∑
`=1

n∑̀
i=1

(x`i − x̄)2︸ ︷︷ ︸
SScorrected

=

g∑
`=1

n`(x̄` − x̄)2︸ ︷︷ ︸
BSS (SStreatment)

+

g∑
`=1

n∑̀
i=1

(x`i − x̄`)2︸ ︷︷ ︸
WSS (SSresiduals)

.

The ANOVA table is

Sources of variation Sum of squares (SS) Degrees of freedom (df)

Between Group (Treatment) BSS =
g∑̀
=1

n`(x̄` − x̄)2 g − 1

Within Group (Residual) WSS =
g∑̀
=1

n∑̀
i=1

(x`i − x̄`)2 n− g

Total TSScor =
g∑̀
=1

n∑̀
i=1

(x`i − x̄)2 n− 1

The null hypothesis H0 is rejected if F =
BSS/(g − 1)

WSS/(n− g)
> Fα(g − 1, n − g). Rejecting H0

when F is too large is equivalent with rejecting H0 if
BSS

WSS
is too large or

BSS

WSS
+ 1 is too

large or
1

BSS
WSS + 1

too small or
WSS

BSS +WSS
is too small. This is used for a multivariate

generalization.

Multivariate ANOVA - MANOVA:

Population 1: X11,X12, · · · ,X1n1

Population 2: X21,X22, · · · ,X2n2

...

47



Introductory Multivariate Methods - Stat 3133 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

Population g: Xg1,Xg2, · · · ,Xgng

Let X`1, X`2, · · · , X`n`
; ` = 1, 2, · · · , g is a random sample of size n` from an Np(µ`,Σ).

The random sample from the different populations are independent.

The sample mean of the `th group is x̄` =
1

n`

n∑̀
i=1

x`i; ` = 1, 2, · · · , g and the overall

sample mean is x̄ =
1

n

g∑
`=1

n`x̄`. Also, the sample covariance matrix of the `th group is

S` =
1

n` − 1

n∑̀
i=1

(x`i − x̄`)(x`i − x̄`)′; ` = 1, 2, · · · , g. This implies the pooled covariance

matrix is

Spooled =
(n1 − 1)S1 + (n2 − 1)S2 + · · ·+ (ng − 1)Sg

n− g
.

The null hypothesis of equality of means H0 : µ1 = µ2 = · · · = µg. The model is
X`i = µ + τ` + e`i where τ` = µ` − µ = (τ`1, τ`2, · · · , τ`p)′ is the `th group (treatment)

effect with

g∑
`=1

n`τ` = 0 and e`i ∼ Np(0, σ2I).

Now to decompose the sum squares, matrix manipulation is used as follows.

(x`i − x̄)(x`i − x̄)′ = [(x̄` − x̄) + (x`i − x̄`)][(x̄` − x̄) + (x`i − x̄`)]′

=[(x̄` − x̄) + (x`i − x̄`)][(x̄` − x̄)′ + (x`i − x̄`)′]
=(x̄` − x̄)(x̄` − x̄)′ + (x̄` − x̄)(x`i − x̄`)′

+ (x`i − x̄`)(x̄` − x̄)′ + (x`i − x̄`)(x`i − x̄`)′

When taking the summation over i, the middle two cross-products become zero vectors. Then,
taking the summation over ` gives

g∑
`=1

n∑̀
i=1

(x`i − x̄)(x`i − x̄)′ =

g∑
`=1

n`(x̄` − x̄)(x̄` − x̄)′︸ ︷︷ ︸
B

+

g∑
`=1

n∑̀
i=1

(x`i − x̄`)(x`i − x̄`)′︸ ︷︷ ︸
W

Therefore, the MANOVA table is

Sources of variation Matrix of SS and cross-products (SSP) df

Between Group (Treatment) B =
g∑̀
=1

n`(x̄` − x̄)(x̄` − x̄)′ g − 1

Within Group (Residual) W =
g∑̀
=1

n∑̀
i=1

(x`i − x̄`)(x`i − x̄`)′ n− g

Total B +W =
g∑̀
=1

n∑̀
i=1

(x`i − x̄)(x`i − x̄)′ n− 1

Note that W =

g∑
`=1

(n` − 1)S` = (n− g)Spooled ⇒ Spooled =
1

n− g
W .
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The null hypothesis is H0 : τ1 = τ2 = · · · = τg = 0 is to be rejected if

Λ∗ =
|W |

|B +W |

is too small. The statistic Λ∗ is known as Wilks’ Lambda. The exact distribution of Λ∗ for
special cases is given on the text book on page 303, Table 6.3.

If n is large, Bartlett has shown that

−
(
n− 1− p+ g

2

)
log(Λ∗) ∼ χ2[p(g − 1)].

Simultaneous Confidence Intervals

If H0 : τ1 = τ2 = · · · = τg = 0 is rejected, the next task is to identify which groups for which
variable(s) (component(s)) are responsible for rejection. Bonferroni’s approach can be used to
construct simultaneous intervals for the components of the differences (τ`− τk) or (µ`−µk),
` 6= k, which adjusts the significance level to the p(gC2) confidence intervals required.

The (1− α)100% confidence interval for the linear combination a′(τ` − τk) = a′(µ` − µk) is[
a′(x̄` − x̄k)± tα/[pg(g−1)](n− g)

√(
1

n`
+

1

nk

)
a′Spooleda

]
.

Here, τ` = µ` − µ = (τ`1, τ`2, · · · , τ`p)′; ` = 1, 2, · · · , g. Let a = (0, 0, · · · , 1︸︷︷︸
jth position

, · · · , 0).

Thus, the linear combination a′(τ`−τk) = a′(µ`−µk) = µ`j−µkj corresponds to component j.
That is, for component j, (X̄`j−X̄kj) estimates (µ`j−µkj). Hence, cov(X̄`j−X̄kj) is estimated

by

(
1

n`
+

1

nk

)
sjj where sjj is the jth diagonal element of Spooled. Since Spooled =

1

n− g
W ,

sjj =
wjj
n− g

where wjj is the jth diagonal element of W .

Therefore, a (1− α)100% confidence interval for the difference τ`j − τkj is[
(x̄`j − x̄kj)± tα/[pg(g−1)](n− g)

√(
1

n`
+

1

nk

)
wjj
n− g

]

where wjj is the jth diagonal element of W .

Example 5.4. Given the following observation vectors on two responses collected for three
treatments.

Treatment 1
6 5 8 4 7
7 9 6 9 9

Treatment 2
3 1 2
3 6 3

Treatment 3
2 5 3 2
3 1 1 3
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Construct oneway MANOVA and test for treatment effects at 5% significance level.

x̄1 =

[
6
8

]
, x̄2 =

[
2
4

]
, x̄3 =

[
3
2

]

⇒ x̄ =
1

n

g∑
`=1

n`x̄` =
1

12

(
5

[
6
8

]
+ 3

[
2
4

]
+ 4

[
3
2

])
=

[
4
5

]

B =

g∑
`=1

n`(x̄` − x̄)(x̄` − x̄)′ =

[
36 48
48 84

]
W =

g∑
`=1

n∑̀
i=1

(x`i − x̄`)(x`i − x̄`)′ =
[

18 −13
−13 38

]
B +W =

[
54 35
35 122

]
The MANOVA table is

Sources of variation Matrix of SS and cross-products (SSP) df

Between Group (Treatment) B =

[
36 48
48 84

]
3− 1 = 2

Within Group (Residual) W =

[
18 −13
−13 38

]
12− 3 = 9

Total B +W =

[
54 35
35 122

]
12− 1 = 11

Λ∗ =
W

B +W
=

515

5363
= 0.096

For p = 2 and g = 3, the exact distribution of Λ∗

n− g − 1

g − 1

(
1−
√

Λ∗√
Λ∗

)
∼ F [2(g − 1), 2(n− g − 1)]

⇒ 7

2

(
1−
√

0.096√
0.096

)
= 8.908 and F0.05[4, 16] = 3.01

Therefore, H0 : τ1 = τ2 = τ3 = 0 should be rejected.

Next for the simultaneous confidence interval α/[pg(g−1)] = 0.004167, t0.004167(n−g) = 3.808.
A (1− α)100% confidence interval for the difference τ`j − τkj is[

(x̄`j − x̄kj)± t[α/pg(g−1)](n− g)

√(
1

n`
+

1

nk

)
wjj
n− g

]

where wjj is the jth diagonal element of W .
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For component 1:

τ11 − τ21 :

[
(x̄11 − x̄21)± 3.808

√(
1

n1
+

1

n2

)
w11

12− 3

]
[

4± 3.808

√(
1

5
+

1

3

)
18

12− 3

]
= (0.067, 7.933)

τ11 − τ31 :

[
(x̄11 − x̄31)± 3.808

√(
1

n1
+

1

n3

)
w11

12− 3

]
[

3± 3.808

√(
1

5
+

1

4

)
18

12− 3

]
= (−0.613, 6.613)

τ21 − τ31 :

[
(x̄21 − x̄31)± 3.808

√(
1

n2
+

1

n3

)
w11

12− 3

]
[
−1± 3.808

√(
1

3
+

1

4

)
18

12− 3

]
= (−5.113, 3.113)

For component 2:

τ12 − τ22 :

[
(x̄12 − x̄22)± 3.808

√(
1

n1
+

1

n2

)
w22

12− 3

]
[

4± 3.808

√(
1

5
+

1

3

)
38

12− 3

]
= (−1.714, 9.714)

τ12 − τ32 :

[
(x̄12 − x̄32)± 3.808

√(
1

n1
+

1

n3

)
w22

12− 3

]
[

6± 3.808

√(
1

5
+

1

4

)
38

12− 3

]
= (0.751, 11.249)

τ22 − τ32 :

[
(x̄22 − x̄32)± 3.808

√(
1

n2
+

1

n3

)
w22

12− 3

]
[

2± 3.808

√(
1

3
+

1

4

)
38

12− 3

]
= (−3.976, 7.976)

Treatment 1 has significantly larger mean than treatment 2 for component 1. It has also
significantly larger mean than treatment 3 for component 2.
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