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Chapter 1

Review of Matrix Algebra

The study of multivariate methods is greatly facilitated by the use of matrix algebra. This
chapter presents a review of basic concepts of matrix algebra which are essential to both
geometrical interpretations and algebraic explanations of subsequent multivariate statistical
techniques.

1.1 Definition of Matrix and Vector

A rectangular array of numbers with, for instance, n rows and p columns is called a matrix
of dimension n x p. It is written as:

r11 T12 ... Tip
Tl X2 ... T2p
X=. .
Tnl Tp2 ... Tpp
A vector is a matrix of n x 1 real numbers x1, xs,...,x, and it is written as:
I
Z2
_ r_ _ /
x = . orx’ = (x1,x9, -+ ,xy) or T = (T1,T2, " ,Tp).
T,
A vector has both magnitude (length) and direction. The length of a vector, ' = (x1,z2,- - , x,),

is defined by

Lm:\/l'%‘i‘x%"‘r“'-i-l'%: x'x.

The length of a vector can be expanded and contracted by multiplying with a constant a.
That is,
axy

ax9
axr =

axn
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Such multiplication of a vector by a scalar a changes the length as

Lo =[5 4 P 1 0222 = oV

When |a| > 1, vector « is expanded. When |a| < 1, vector « is contracted. When |a| = 1,
there is no change. If a < 0, the direction of vector x is changed.

Choosing a = L', we obtain the unit vector Lgg, which has length 1 and lies in the direction
of x.

T2
Geometrically, the length of a vector in two dimensions can be viewed as the hypotenuse of
a right triangle.

Example 1.1. If n = 2, consider the vector & = {

1 } The length of  is Ly = \/23 + 23.

1.1.1 Matrix Characteristics

e Rank: The rank of a matrix A is the maximum number of linearly independent rows

(columns).
— A set of k vectors xy, @9, ---, xp is said to be linearly independent if aix; +
asxy + -+ + apTE = iaiazi = 0 only if ay = as = --- = a = 0. That is, if
every a; is zero, the a;il T2, -+, ) (columns) are linearly independent. Linear

independence implies every vector can not be written as a linear combination of
the other vectors. Vectors of the same dimension that are not linearly independent
are said to be linearly dependent which means at least one vector can be written
as a linear combination of the other vectors.

Example 1.2. wlz{i},wgz{f]

a1x1 + acxe =0 =
3ai1 + 2a2, =0

4ar 4+ a2 =0
holds only if a; = a2 = 0. This confirms that x; and x, are linearly independent.

In other words, the columns of matrix A = [ i ? ] are linearly independent.

1 1 1
Example 1.3. z1=| 2 |, xz3=| 5 |, x3=| —1
0 1 -1

ai1x1 + asxo + azxs =0 =
ar+ ag+a3=0

2a1+5a2—a320
ag—a3:0

= a1 +2a2 =0. = If ag =ay =0, then azg = 0. If a; = 1, then ay = a3 = 0.5.
Therefore, &1, 3 and x3 are not linearly independent.
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— The row and column rank of a matrix are equal.
Rank (A) > 0

x Rank (A) < min(n,p)

Rank (A) = Rank (A’)

Rank (A) = Rank (A’A) = Rank (AA’)

*

*

*

e Trace: The trace of a matrix is the sum of its diagonal elements: tr(A) = > a;.

A+ ) t( ) + trB)

AnXp pxn ) tr(BA)
xn) = tr(CAB) =tr(BCA)

e Determinant: Det( ) =|A]
- Jad| = a"|A
— |AB| = [BA| = |A]|B|

e Inverse: A square matrix A is said to be non-singular if its rank is equal to the number
of rows (columns).

— If a k x k matrix A is non-singular, then there exist a unique k x k matrix B such
that AB = BA = Ij,«;.
* The matrix B is called inverse of A denoted by A1,

* A~! exists if and only if the determinant of A is non-zero. And hence, |A

A7

e Positive Definite Matrix: A symmetric matrix A is said to be positive definite if the
quadratic form Q(x) = @’ Ax > 0 for all  # 0 where &’ = (x1, 22, -, Ty).

1 2 2
Example1.4.A—[2 4} ,:13—[_1}

1 2 2
Q(a:):m/Am:[Z,—l}{Q 4}[1]20
= A is not positive definite.

— A symmetric matrix A is said to be positive semi-definite if ’Axz > 0 for all

x #0.

1.1.2 Eigenvalues and Eigenvectors

Let A be a k x k matrix and I be a k x k identity matrix. The scalars A1, Ao, - - -, Mg satisfying

the polynomial equation:
|A— X =0

are called the eigenvalues (characteristics roots) of matrix A. These eigenvalues are unique
unless two or more eigenvalues are equal.
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The equation |A — AI| = 0 as a function of A is called characteristic equation.

The eigenvalues of a symmetric matrix with real elements are real. \;’s can be complex
numbers if the matrix is not symmetric.

The eigenvalues of a positive definite matrix are all positive. If a k x k symmetric
matrix is positive semi-definite of rank r (r < k), then it has r positive and (k —r) zero
eigenvalues.

The eigenvalues of a diagonal matrix are the diagonal elements themselves.

The eigenvalues of an idempotent matrix A, that is, A = A? are 1 and 0.

Associated with every eigenvalue \; of a square matrix A, there is an eigenvector x; whose
elements satisfy the homogenous system of equations:

(A — )\Z'I)CCZ' =0 ACCZ' = \ix;
If |A — \I| =0, there exist at least one non-trivial solution (z; # 0).

The elements of the vector x; are determined only up to a scaled factor because the
system is homogenous, we get only relationship like z1; = 5x9; because the number of
unknowns is greater than the number of equations.

— Since the values of the eigenvectors are trivial, normalizing makes them unique,
that is, the eigenvectors have a unit length.

— The normalized eigenvector, e;, of x; is:

1 €T;
€ = —&; =
Lg, Tz
* ||e;|| = ele; =1, for all i.
/
* ejej = —— I =0 for all i # j.
VT o .
ek $jm]

— The normalized eigenvectors are chosen to satisfy eje; = ehes = --- = ej e, = 1
and be mutually perpendicular, eje; = 0,7 # j.

Example 1.5. Find the eigenvalues and eigenvectors of A = [ ; ; } .

1 2 10 1-A 2
Y e A B R | L

0

(1-N2-N)-6=0=>X-31-4=0

Thus, the eigenvalues of A are Ay =4 and Ay = —1.

To find the corresponding eigenvectors:

A:BZ' = )\iiL'i, 1= 1, 2
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e For \; =4,
Aml = )\1331 = L2 o =4 n
3 2 T21 T21

3
= 11 + 2291 = 4211 = 221 = 571

2
Let 11 =2 = 291 = 3. Thus, x = [ 3 ] - - not unique.

The normalized eigenvector of x = [ 3 } is

w w
|

1 1 [ 2 }
el = xr1 = —
! NEX ! Vi+91]3
Note that eje; = 1.
e For \g = —1,
1 2 19 12
A$2 = )\2%2 = =-1
3 2 92 Z22
= T12 + 2T92 = —T12 = T2 = —T12

Let 10 =1 = x99 = —1. Thus, x = [ } - - not unique.

—1

The normalized eigenvector of x = [ _1 ] is

1 1 1
€ = 9 —_— e
«/ac’z.'z:g \/1+1|:_1:| [—\/5
Note that ebes = 1. Also, e; and ey are orthogonal (perpendicular), that is, €jes = 0.

Example 1.6. Find the eigenvalues and corresponding eigenvectors of the following two
matrices:

L s 13 —4 2
A= = A =6, Ao =—4and B = —4 13 -2 = A =18, A2 =9, \3 =
- 2 -2 10

1.2 Spectral Decomposition

Any symmetric square matrix can be can be constructed from its eigenvalues and eigenvectors.

Let A be a k X k symmetric matrix having k non-zero eigenvalues A1, Ao, ---, A with
normalized eigenvectors e, es, ---, €. Then, the spectral decomposition of A is given by:

k
/ / ’ /
A= Arere; + Aresey + -+ )\kekek = E )\jejej.
Jj=1
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1 2
Example 1.7. A = ( 9 _9 )

1—-A 2
2 —2-A

= A2 4+ X\ — 6 = 0. Thus, the eigenvalues of A are \; =2 and \y = —3.

e The eigenvalues: |A — M| = ‘ ‘ =0

e The eigenvectors are:

Awl = )\1$1 <~ 1 2 o =2 i
2 =2 21 o1

2
é.%'ﬂ:%xu :>$1—<1>

— For \; =2,

The normalized eigenvector corresponding to Ay =2 is e; = (

pnnee (3 1) (1) ()
2 =2 x99 €22

()
:>5822:—2{E12:>2122:

S-S
~—

— For )\2 == —3,

-2

The normalized eigenvector corresponding to Ao = —3 is ez = <

) |

Shsl-

Note that eje; = ehea =1 and e|es = ehe; = 0.
We need to show A = \jeje] + Aaeqél.

(3 2)=2(2) (5 #) (2 (s %)

VS

The matrix is written as a function of eigenvalues and normalized eigenvectors.

In matrix form, the spectral decomposition of A is:

A =0OAO
M O - 0
0 Mo -+ 0
where O = (e1, e, -+ ,e;) and A = diag(A1, g, -+, \g) = ) . .
0 0 - M\

Note here that O'O = OO’ = I (O is orthogonal, O~ = O').
In the above example,

O = (81,62) = [
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= A=0AO0'".
Again, using spectral decomposition, the inverse of A is given by
A—l — OA—lol
1 1 1
where O = (e1, e, -+ ,e;) and A~ = diag ()\1, N ,)\k).

k
1
-1
= A" = Z Yeje}.
j=1""
Also, for a positive definite matrix A,
A2 = OA20'

where O = (e, €9, - ,e) and Az = diag (\/E, \/E, ,\//\7;{>

k
= A% = Z \//\jeje;.
j=1
X 1 9 13 -4 2
Example 1.8. Find A~! and A2. A = and A=| -4 13 -2
2 1 2 =2 10

1.3 Singular Value Decomposition

Let A be an m x k matrix. Then there exist an m X m orthogonal matrix U (i.e., UU’ = I)
and a k x k orthogonal matrix V' (i.e., VV’ = I) such that A = UAV' where A is an m x k
matrix with (¢,47) entry A; > 0 for i = 1,2,--- ,min(m, k) and the other entries are zero.

o U=(e1,€2, ", €ninimp)) Wheree; (i = 1,2,--- ,min(m, k)) is the normalized eigenvector
corresponding to \; of the matrix AA’.

o V= (ej,€e5, - ,efm.n(m k)) where e (i = 1,2,--- ,min(m, k)) is the normalized eigenvector
corresponding to A of the matrix A’A.
VM 0 . 0
0 Ve - 0
e A= ) ) ) :
Note that v/); is the eigenvalue of matrix A where ); is the eigenvalue of A’A or AA’.
3 1 1
Example 1.9. A = [ 103 }
) 3 11 -
3 1 1 11 1
! __ J—
AA = _131} 1 3| = 1 11]and
11| L
[ 3 -1 - 10 0 2
AA=|1 3[?%}: 0 10 4
11 I l2 4 2
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e Eigenvalues and eigenvectors corresponding to AA’.
11-X 1

1 11 =X
A2 —220+120=0= A =12 or A = 10.

The eigenvalues of AA’ or A’A are A\; = 12 and A\ = 10 which implies the eigenvalues
of A to be \;{ =12 and \s = V/10.

\AA’—)\I]:O:>‘ =0=(11-))2-1=0

— Eigenvector corresponding to A\; = 12,

11 1
AA'a:l =Nz = 1 =12 i = T21 = T11
1 11 21

1
1 1
Let x11=1= 291 =1= a1 = [ 1 :| = e = [ \{il
— FKigenvector corresponding to Ay = 10,

AA/CCQ = )\ng = 1 1 T2 =10 T12 = X992 = —X19
1 11 T2

1
Letx12:1:>w22:—1:>a:2:[ 1:|:>62:[ \{il
B V2

1

U = (er.en) [ e Vii] amdA:diag(\/ﬂ,\/@:[\/OT2 \/OTO}

V2 V2

e Eigenvalues and eigenvectors corresponding to A’A.

10— A 0 2
|[A’A = NI =0= 0 10— A 4 =0

2 4 2— A

10— A 4 0 4 0 10—X

(10_)‘)‘ 4 2—)\’_0’2 2—)\‘+2‘2 4 ‘_0

M—_—12 =0=X=120or A=10or A = 0.
— Eigenvector corresponding to A\; = 12,

10 0 2 11 T11

A/A$1:)\1$1:> 0 10 4 21 =12 | x91

2 4 2 31 31

10%11 + 03321 + 2I31 = 123311
011 + 10291 + 4231 = 12791
2211 + 4x91 + 2231 = 12237

= T91 = 2711 and T3] = T11

1
, P
Let z11=1= 291 =2and z31 =1=x1 = 9 :>e>i<: =
1
! 7
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— Eigenvector corresponding to A2 = 10,

10 0 2 12 12
A/A$2 = )\2%2 = 0 10 4 22 =10 | x99
2 4 2 32 T32

10x19 + Ox99 4+ 2230 = 10219
0:E12 + 103322 + 4:E32 = 103322
2119 + 4w9s + 2x30 = 10139

= 130 = 0 and x99 = —%l‘lg.
2
2 V5
Let xr10=2= x99 =1=x; = -1 :>€§: —%
0 0

1
A=UAV' = [ v2
V2



Chapter 2

Aspects of Multivariate Analysis

2.1 Introduction

Multivariate statistical analysis is concerned with data collected with several dimensions of
the same individual (subject or experimental unit). Using multivariate analysis, the variables
can be examined simultaneously in order to access the key features of the process. It enables
us to

e explore the joint performance of the variables and
e determine the effect of each variable in the presence of the others.

As in the univariate case, it is assumed that a random sample of the multi-component
observations has been collected from different individuals. The data consists of simultaneous
measurements on many response variables. The common source of each individual observation
will generally lead to dependence or correlation among the dimension (components). And
this is the feature that distinguishes multivariate data and techniques from their univariate
counterparts.

2.1.1 Objectives of Multivariate Analysis

The objectives of scientific investigations to which multivariate methods most naturally lend
themselves include the following:

1. Data reduction or structural simplification. The phenomenon being studied is
represented as simply as possible without sacrificing valuable information. This will
make interpretation easier. Example: principal component analysis.

2. Sorting and grouping. Groups of ”similar” objects or variables are created, based
upon measured characteristics. Example: discriminant analysis.

3. Investigation of the dependence among variables. Studying the covariance
structure will help determine the nature of the relationships among variables. In
multivariate study, the interest is on the off-diagonals (covariances). Are all the variables
mutually independent or are one or more variables dependent on the others? If so, how?
Example: canonical correlation analysis.

10
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4. Prediction. The relationship between variables can be determined for the purpose of
predicting the values of one or more variables on the basis of observations on the other
variables. Example: multivariate linear regression, multivariate analysis of variance.

5. Hypothesis testing. Specific statistical hypotheses can be tested to validate assumptions
or to reinforce prior convictions.

2.1.2 Organization of Multivariate Data

Most multivariate data sets can be represented in a rectangular format, in which the elements
of each row correspond to the variables values of a particular unit and the elements of the
columns correspond to the values taken by a particular variable.

Suppose there are p > 2 variables (characteristics) measured from n items. Let z;; denote
the value of the j! variable on the i*" item (i = 1,2,---,n and j = 1,2,--- ,p, n >> p).
Consequently, the data can be displayed as follows:

Variable 1 Variable 2 ... Variable j --- Variable p
Ttem 1 11 12 s xy; oo ZTip
Ttem 2 o1 o9 e :Egj e Z2p
Item ¢ Ti1 L0 e Tij ... Tip
Item n Tnl Tno . Tnj . Tnp

This can be written as a rectangular array, matrix, X of n rows and p columns:

T T2 o Ty o X
To1 Xgg v Tz cc Ty
X =
Til T2 ... T4y - Tip
| Tnl Tn2 - Tyt Tnp

dnxp

A single multivariate observation is the collection of measurements on p different variables on
the same item. Each row of X represents a multivariate observation.

/
12 15 1p 1 +— 1% multivariate observation
21 22 2 2p 2 + 2 multivariate observation
X = = ) ) .. .
Tl Tz ... Tij ... Tip w; + it multivariate observation
’ + nth multivariate observation
L Tnl Tp2 " Tnj - Tpp | Ty |

11
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Descriptive Statistics

A large data set is bulky, and its very mass poses a serious obstacle to any attempt to visually
extract pertinent information. Much of the information contained in the data can be assessed
by calculating certain summary numbers, known as descriptive statistics. For example, the
arithmetic average, or sample mean, is a descriptive statistic that provides a measure of
location-that is, a ”central value” for a set of numbers. And the average of the squares of the
distances of all of the numbers from the mean provides a measure of the spread, or variation,
in the numbers.

1 n
e Sample mean: 7; = —Z:Eij; J=12--,p
n

i=1
1 n
. L2 _ = \2. ; _
e Sample variance: s7 = sj; = nz;(x” —Zj)% j=12,---,p
i—
1 n
e Sample covariance between X; and Xj: sjp = —Z(xij — i])(xzk — Ti); k=
n
=1

1,2,---,p; j # k. Note sj;, = sp; for all j and k.
Sjk

—— 0 Bk =
ViV Skk

e Sample correlation coefficient between variable j and k: rj, =
1,2,---,p. Note rjp = rp; and rj, = 1if j = k.
Although, the sign of the sample correlation and sample covariance are the same, the
correlation is ordinarily easier to interpret as:

— its magnitude is bounded, that is, —1 <7, <1 for all j and k.
— it is unitless.

— it takes the variability into account.

But the major disadvantages of correlation are it does not measure non-linear associations
and it does not indicate any cause and effect.

The descriptive statistics for all the p variables in terms of vector and matrix operations are:

i1 Z1
n n s
_ 1 1 T2 T2
e Sample mean vector: & = — E xr; = — E . =
=1 =1 '
$'ip l’p px1
Also,
Ti1 T2l ot Tyl ot Tl 1
Tz Tz ot Xyz ottt Tp2 1
_ 1
r=-X'1=
n T1j X255 ... Tij ... Tnj 1
L xlp xzp .« xip . e "'U’I’Lp Jpxn L ]_ 1ox1

12
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n

1
e Sample variance-covariance matrix: S, = — Z($2 —z)(x; — ).
n
i=1
1 !/ 1 / / !/ 1 !/ 1 / /
S,=-|X'X - -X1X1)| =" (XX --X11IX
n n n n
s11 S12 ccc Sip
S21 S22 v S
=85, =
Spl Sp2 o Spp

pPXp
Consequently, the sample standard deviation matrix is written as:

NGTRE 0

V2 =
0 0 S
pr d pxp
1 1
e Sample correlation matrix: R = (V;;2)~18,(V;2)~!

L T2 vt Tip 1 rig - 1p

Tor To2 ottt T ror 1 - 1y
= R= =

’r‘pl rp2 “ .. ’r‘pp ’r'pl rp2 .« .. 1

pPXp

1 1
Note S,, = V;2 RV,?. Note also that S,, and R are symmetric and positive definite.

Example 2.1. Find the sample mean vector, covariance and correlation matrices for the
following data matrix.

o

1
-1 3
)

w

We find three observations, and here is what we observe (with notation: z17 = 4, 91 = —1,
x31 = 3 and z12 = 1, x99 = 3, w32 = 5). The data array would the look like:

T11 T12 4 1
X = 21 T22 = -1 3
r31 T32 3 5

2.2 Random Vectors and Matrices

A random vector (matrix) is a vector (matrix) whose elements are random variables. Let X
be the j*" variable, then

13
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[ ] Var(Xj) :O'Jz = (X] —Mj)Q; j: 1,2,-" ,p

b COV(vaXk‘) = Ojk = E(X] _MJ)(X]C _:uk‘)v ]7k = 1a27"' , D

o Cor(X;, Xp) = pi = \/%’;@ k=12, p
Let X be an n x p random vector, i.e, X = (X1, X2, -+, X,)". Then the mean vector is:
X1 E(Xy) 11
px)—p |2 < [P e,
%) E)] L

The population variance-covariance matrix is:

X1 —m
, Xo — 2
E=BEX-p)(X-—p)=F : (X1 — p1, Xo — pig, -+, Xp — po]
XP—Mp
(X1 —m)? (X1 — )Xo —p2) -+ (X1 —p)(Xp — 1p)
(X2 — p2) (X1 — 1) (Xo — po)? s (X = p2)(Xp — )
=3Y=F . . ) .
(Xp — ) (Xa — 1) (Xp — pip) (X2 — p2) .. (Xp — Np)z
B(X1 — ) E(Xy—m)(Xo —p2) .. E(Xy— ) (Xp — pp)
| E(Xa = po) (X — ) E(X2 — p2)? e B(Xy = ) (Xp — pp)
E(Xp - Np)(Xl — pi1) E(Xp - ,Up)(X2 —p2) ... E(Xp - Np)2
o1 o12 - Oip
o1 02 - Oy
Thus, ¥ =
Opl Op2 -+ Opp

pPXp
If the p components are independently distributed (which rarely happens), then all the

%p(p — 1) covariances of ¥ will be zero. This cannot dealt with multivariate analysis rather
univariate analysis.

The population standard deviation matrix is written as:

/o1 0 .- 0

1 0 o - 0

o2 = . . . .
0 0 Opp

14
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Also, the population correlation matrix is p = (a’é)*lﬁ(a%)*l, that is,

I pi2 - pwp

p2ar 1 o pyp
P = . . . .
ppr pPp2 o1

pXp

Note X = a%paé. Also here, ¥ and p are symmetric and positive definite.

2.3 Distance of Vectors

Most multivariate techniques are based upon the simple concept of distance. If the point
P = (x1,x2) is the point on the XY plane, then the Euclidean (straight line) distance from
P to the origin O = (0,0) is given by the Pythagorean theorem. That is,

dg(0, P) = \/(x1 — 0)2 + (z3 — 0)2 = \/2? + 23.

All the points (z1,x2) that lie a constant distance, say ¢, from the origin satisfying the
equation ¢ = \/x? + 23 = ¢ = 22 + 23 is called equation of a circle with radius c.

The Euclidean distance between two points P = (z1,z2) and @ = (y1,y2) in the two
dimensional space is

dp(P,Q) = \/(z1 — y1)2 + (12 — y2)2.
Similarly, the Euclidean distance between P = (x1,22, -+ ,2,) and Q = (y1,y2, -+ ,¥yp) in
the p dimensional space is

dp(P.Q) = /(w1 — ) + (22— 2P+ (5 — ) = V(@ — 9@~ v).

Suppose X' = (X1, Xa,---,X,) follows a p dimensional distribution with mean E(X) = p
and covariance matrix Cov(X) = 3. And suppose again & = (Z1, T2, - ,Zp) is a vector of
means based on an n x p observed data matrix.

The Euclidean distance between the sample mean & and the theoretical mean p is given by

ds(®, p) = /(& — p)' (T — p).

Straight line or Euclidean distance is unsatisfactory for most statistical purposes. This is
because each co-ordinate contributes equally to the calculation of Euclidean distance. This
suggests a statistical measure of distance.

The statistical distance between & and p is given by

ds(@, p) = /(2 — p)=1(Z — p).

011 012 - Olp T1 — 1
B B B B 0O21 022 -+ O To — M2

= ds(w,u) = [901 — M1, T2 — 42,00, Tp — Mp]
Opl Op2 - Opp Tp — fp
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Hence, a statistical distance takes into account the variability as well as the correlation unlike
the Euclidean distance.

e If ¥ = I, the Euclidean and statistical distances are equal.

o If 0;; = 0 for i # j, the statistical distance is given by:

+ ot
011 022 Opp

2 2
_ T1— M1 T2 — M2 (zp — 1)
dg(:c, “) _ \/( ) ( ) p p .
If one component has much larger variance than another, it will contribute less to the squared
distance. Two highly correlated variables will contribute less than two variables that are
nearly uncorrelated. Essentially, the use of the inverse of the covariance matrix eliminates
the effect of correlation and standardizes all of the variables.

4 0
0 1
is greater than that in the zo direction as 017 =4 > 093 = 1.

Example 2.2. Let x = [il], n= [Zl] and ¥ = [ } . The variability in the z; direction
2 2

Euclidean distance: dg = \/(z1 — p1)? + (22 — p2)?.

Statistical distance: dg = \/(z — p)E~1(z — p).

19 —
=>dS=\/(fU1—M1,ZL‘2—M2) [6 J B;_Zﬂ

= dg = \/(951 - M1)2 + (w2 — M2)2

4 1

This is simply an equation of ellipse which is centered at g = (1, u2)’. All points that lie a
constant distance, say ¢ = 2 (the boundary of the ellipse), from the theoretical mean p satisfy
the equation

(21— m)* | (w2 —p2)® _

=c* =4
1 1 ¢

At T1 = U1, (1‘2—#2)2:4:>.T2—;L2::|:2:>x2:,u2:|:2.
At 2o = po, (xl—u1)2:16:>x1—ul =44 =2 = pu +4.

Plotoftheellipse

The ellipse stretches in the x; direction as compared to that in the zo direction because of
the larger variance in z (the ellipse is parallel to the x1). Having the same variance in both
axes, the equation will be simply a circle.

2.4 Linear Combinations of Random Vectors

1. Univariate case: For a single random variable X, E(X) = p and Var(X) = E(X —
)2 = o2, Then, for a linear combination Z = aX, F(aX) = aE(X) = au, and
Var(aX) = a*Var(X) = a?0? for a € R.

16
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2. Bivariate case: For two random variables, X; and X3, F(X1) = p1 and E(X2) = pe;
Var(X1) = E(X; — 1)? = o011 and Var(Xz) = E(Xa — pg)? = o99; Cov(Xy, Xo) =
E(X1 —m)(X2 — p2) = o12.

If X' = (X3, X5) and @’ = (a1, az2), then the linear combination Z = @’ X = a1 Xo+asXo
is a one-dimensional random variable.

o E(a'X)=E(mX1+ axXs) = a1 E(X1) + a2 E(X2) = aypin + azpe
/ _ miy g
= E(a'X) = (a1, a2) [M ] =ap
2

° Var(a’X) = Var(a1X1 + CL2X2) = E[a1X1 + as Xy — (alul + agug)]Z

= Var(a’'X) = a%au + a%am + 2a1a9012

el 2

O12 0O22] |a2
=a'Xa
3. Multivariate case: If X a p-dimensional random vector, X = (X, Xs,---,X,), and
a € RP, then the linear combination Z = a’X = a1 X1 +aXs+- - -+a,X, is univariate.

That is,
e F(a'X)=dE(X)=dp
e Var(a’'X) = E(d/X —ad'p)? =d'E(X — pu)(X — p)'a=aXa
4. Consider g linear combinations of p random variables.

P
Zy = a\ X = anXi +anXo + -+ apX, = ZGIJXJ‘
j=1

p
Zy = ayX = anXi +anXo+ - +apX, = ZanXj
i=1

p
Zg= a;X = a1 X1 +agpXe+ - +agpX, = Zaquj
j=1

In matrix form:
Z ailr a2 -0 aip| [ X1
Z3 as1 a2 -+ ag| [Xo
=| . . . e Z=AX
Zq agl g2 -+ agp] | Xp
e F(Z)=FE(AX)=AE(X)=Ap
e Cov(Z)=Cov(AX)=AE(X —p)(X —p)A' = AX A’

17
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Example 2.3. Find the mean vector and covariance matrix for the linear combinations
Zl :Xl —X2 and ZQ :X1+X2.

SR

1 -1 —
o B(Z)=AE(X)= Ap = [ L ] {Zj = [Zi +Z§]
e Cov(Z)=ACov(Z)A'
|1 =1 | |on1 o12 1 1| | o11—2012+02 011—02
= Cov(Z) = [ I 1 } [012 022] [ -1 1 } B { 011 — 0922 011+ 2012 + 0922

2.5 Expected Value of the Sample Mean Vector and Covariance

Matrix
Let X be a random matrix given by:
X1 X - Xy X
Xo1 Xoo -+ Xgp X}
X = . : : . = :
an Xn2 to an X;L
If X1, Xo, ---, X,, is a random sample from some joint distribution with mean vector g and

covariance matrix 3, then

_ 1 & 1 & _
e H(X)= - g E(X;) = - g p = p. Thus, X is an unbiased estimator of the mean
i=1

i=1
vector w.
e Cov(X)=E(X —p)(X —pn).
E(X1—m)? E(Xy — ) (X —p2) -+ BE(X1 — ) (Xp — pp)
_ E(X2 — p2)(X1 — ) E(Xs — p2)? e B(Xa = p2)(Xp — pp)
Cov(X) = ) ) ) )
_E(Xp — p) (X1 — 1) E(Xp — ) (X2 — p2) - B(X, - ,up)z
(1 1 17
5011 g0'12 ot —O1p
1 1 1
—021 —022 -+ —0Y
=|n n n
I 1
70' 70' DY 70-
L Pt P n P
1
=-3
n
1 n
Recall the sample variance-covariance matrix S, = — Z(XZ - X)(X; — X). It can
n
i=1

-1
be shown that E(S,) = U 5} Thus, S, is a biased estimator of ¥. This implies
n

18
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S = ni 1,S’n = nil z_;(XZ — X)(X; — X)" is an unbiased estimator of X, i.e.,
n n n—1
E(S) = E(S,) = X=X
(§) = ——7E(Sn) = ——

19



Chapter 3

The Multivariate Normal
Distribution

Just as the normal distribution dominates univariate techniques, the multivariate normal
distribution plays an important role in most multivariate procedures, because

e the multivariate normal distribution is mathematically tractable and ”nice” results
can be obtained. Mathematical complexity of other data generating distributions may
prevent the development of sampling distribution of the usual test statistics and estimators.

e the sampling distribution of many multivariate statistics are approximately normal,
regardless of the the form of the parent population, because of the central limit effect;
i.e., as the number of source random vectors increases without bound.

3.1 The Multivariate Normal Density and Its Properties
Univariate case:

Let X be a random variable with E(X) = p and var(X) = 2. Then if X ~ N(u,0?), its
pdf is given by

1 1(z— p)?
flz) = exp [—2(2@} .

2mo g

Y
Note the term @72/0

x to p in standard deviation units.

= (z—p)(6?) 7 (z — ) measures the squared statistical distance form

Multivariate case:

Suppose X' = (X1, Xo,---,Xp) is a p x 1 vector with E(X) = p and Cov(X) = E(X —
1) (X — p)’ = 3. The joint density of p independent normal variates, X ~ N, (p,X), is:
(@) = (1,22, 2p) = f@1) f(w2) - flap)

— 1 1(@i—p)?| 1 1 (va—pia)? 1 1 (2p—pip)®
F(@) = oty o0 |32 | ke [l | e [ g
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1 1 1~ (25— p)?
= xTr) = exp | —= g I
e (Vam)' o102+~ 25 9
. . 1
Since ¥ = diag(o11,0922, -+ ,0pp), | 2| = 011022+ - - 0pp and |X]2 = 0102 - - 5. Also,
. (z — Nj)2 - 2\—1 rs—1
D = Y - (@) — ) = (- 'S (@ )
J=1 J j=1

Therefore, the joint density is

a::#ex —lm— 'S e —
f(x) i) p[ 5@ —p)E (@~ p)

The general p dimensional normal density function is obtained by letting 3 to be any p x p
symmetric matrix,

011 012 - Olp

021 022 -+ O
3> =

Op1 Op2 -+ Opp

Here, the j'* element of p is still E(X;) = pj. And the j* element of ¥ is still oj; =
E(Xj — uj)? but the (4, k)" element of X is now o, = E(X; — u;)( Xk — pix), i # k-

For a general p dimensional normal density function, X ~ N,(u, X), (x —p)'Z " (z—p) = 2
is the squared statistical distance from « to p.

Note the symmetric matrix ¥ is positive definite (all eigenvalues are positive). Let a’ =
(a1,az2, - ,ap). We need to show a’3a > 0. Hence, a’¥a = a’'E(X — p)(X — p)'a since
Y = E(X — p)(X —p). Since (X — p) a is a scalar, its transpose makes no change, i.e.,
a’Ya can be written as Fla’ (X — pu)(X — p)'al = Eld (X — p)a’ (X — p)] > 0. Therefore,
3] is positive definite.

Example 3.1. Bivariate normal distribution (p = 2).

X1 u1 011 012
X = s = d E =
[X2} H [m}an [021 022]

012
12 = —F——F——= = 012 = P124/0111/022
P \VO114/022 p

N 5 [ 011 P12+/0114/022

= — p? = (1 — p?
piaJoT/5E - }ZHEI 011022 — piao11022 = (1 — pig)o11022

Loyl 1 [ 0922 —P124/011/022 ]
(1= p2y)o11022 | —P124/0111/022 o11
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The squared statistical distance is (X — p)'2 (X —p) =c

1 022 —pP124/0111/022 ] [ X1 — ]
¢ =Xy — g, Xo — pig] —
X1 =, X M2](1—p2)0110'22 [ —p124/011/022 o1 Xo — p2
1 [022(21 — p1) — p124/011/022(22 — p2), { 1 — ]
(1 — p2y)o11022 —P123/T11/022(71 — 1) + 011 (T2 — p2)] | o2 — p2
L

1
= [o2a(z1 — p1)? — 2p12+/011 /022 (21 —

B (1- 0%2)011022

_ 1 (1 — p1)? o <:c1 - m) <$2 - M2> 4 (z2 — M2)T
(1—p3y) o11 Vo1 V022 0922

Therefore, the bivariate normal density is given by:

1) (2 — pi2) + 011 (2 — pi2)?]

1
2my/(1 = piy)on1092

f(@1,m2) = exp(—%c).

3.1.1 Principal Axis of the Multivariate Normal Density

The component (x — )37 (x — p) specifies the equation of an ellipsoid in the p dimensional
space when it is set equal to some positive constant ¢. The family of ellipsoids generated by
varying ¢ have a common point g, that is, each ellipsoid is centered at p = (1, 12, , pp)’.
For example, figure 3.1 represents an ellipse for p = 2 obtained by varying the boundary of
the ellipse c.

-5 0 5 10

Figure 3.1: Plot of an ellipse for a bivariate normal distribution (p = 2)

The first principal axis of each ellipsoid is the line passing through its largest dimension and
the second which is perpendicular. If any line through p of an ellipsoid is represented by
its coordinates & on the surface, then the first principal axis will have coordinates & that
maximized its squared half length, d? = (z — p)'(z — p).
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So, to maximize d? = (& — p)’'(x — p) subject to the constraint (x — p)' X1 (x — p) =c (cis
fixed), the lagrange function is used as

fl@) = (z—p) (@ —p) = Nz —p)S" (z—p) -

where A is the lagrange multiplier. Thus, the coordinates of the longest axis must satisfy the
equation

;;f(zc) =0=2x—p) -2 Hz—p)=0= T -\ H(xz—pn) =0.
Then, pre-multiplying by 3 gives
(X - X)(x—p)=0.

The trivial solution is (& — ) = 0. In order to have a non-trivial solution, |3 — \I| = 0.
Hence, )\ is the eigenvalues of ¥. But, to which of the p eigenvalues of 3, does the vector
x correspond? From above, we have (I — AX"!)(x — u) = 0. This implies, (x — u) =
AX~!(z — p). Pre-multiplying this equation by (z — u)’, yields

(@ —p) (@ —p) =Nz — p)=" (z - p)
= d% = e

For a fixed ¢, the length of the principal axis is maximized by taking A as the largest eigenvalue
A1 of ¥. Thus, the half length of the major (principal) axis is equal to d; = /Aic in the
direction of e; (where e; is the normalized eigenvector corresponding to the eigenvalue A; of
3). Consequently, the full length of the principal axis is equal to 2d; = 2/A;c.

Example 3.2. Consider the bivariate case, p = 2. That is, X = [ §1 ] with p = [ Zl ]
2 2

o111 O
and X = P12 0 Assume (1 > o, 011 = 092 and o1 > 0.
021 022

Let us plot the ellipse. Note that the ellipse could not be parallel to the X or Y axis as the
off-diagonal of X is not zero.

o1 —A 012

To find the eigenvalues of 3: | —A\I| =0=
o2 o1l —A

:0:>)\2+20'11)\+0'%1—

0%2 = 0. This equation is quadratic in A. Therefore, A\ = 011 + 012 and Ay = 011 — 010.

The eigenvectors (orientations) of the major and minor axes:

e For \{ =011 + 012 = Xx1 = Mx1.
011 012 T11 T11
= (011 + 012)
012 011 T21 T21
011211 + 012%21 = 011211 + 012211

012711 + 011%21 = 011221 + 012721

= T21 = T11-
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The major axis will be parallel to the line x9; = z17. Let 17 = 1 = x9; = 1. Thus, the
eigenvector corresponding to A\; = 011 + 012 is 1 = (1,1)". The normalized eigenvector
corresponding to Ay = 011 + 012 is 1 = (1/\/5, 1/4/2)" which is the coordinates of the
major axis. Hence, the first principal axis lies along the 45° through the center point

o= (1, p2)’.

e For Ao =011 — 019 = Xx9 = Aoxo.
011 012 12 - (0_11 o 0_12) Z12
012 011 €22 22

011%12 + 012%22 = 01112 — 012212
012%12 + 01122 = 01122 — 012%22
= T99 = —T12.
The minor axis will be parallel to the line x99 = —x19. Let z120 = 1 = z90 = —1.
Thus, the eigenvector corresponding to Ao = 017 — 012 is 3 = (1, —1)’. The normalized
eigenvector corresponding to Ay = o011 — 012 is €3 = (1/\@,—1/\/5)’ which is the
coordinates of the minor axis.

Note the major and minor axes are perpendicular, that is, ejes = ehe; = 0.

Beginning at the center p, the half length of the major axis is di = VAjc = /(011 + 012)¢
in the direction of e; and the half length of the minor axis is da = v/Aac = /(011 — 012)c in
the direction of es.

Now, the plot of the ellipse is as shown below.
InsertthePlothere

Along the ellipse shown above (on the boundary of the ellipse) the bivariate normal density
is constant. This path along the surface is called a contour.

Note:

e If 012 = 0, then the equations of the major and minor axes will be reversed. That is, the
major axis will be parallel to the line x1; = —x92; while the minor axis will be parallel
to the line 19 = x99.

e If 015 = 0 (p12 = 0), then the concentration ellipse would simply be a circle and an
infinity of perpendicular axes can be given as ”principal”, each with half length ,/o11c.

Remarks: Recall spectral decomposition. Let O be a matrix whose columns are the normalized
eigenvectors of 3 and let A be a diagonal matrix whose diagonals are the eigenvalues of X.
Then, using spectral decomposition

p

p p
1
=) Aeje; =0A0 571 =) pve L =0A'0 and 2 =Y \/Ajejel = OA: 0

j=1 j=1 j=1

Generally,
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o (x — )X (x — p) = c defines ellipsoids of different sizes depending on c.
e Each ellipsoid is centered at p = (u1, g2, -+, pp)'-
e The half lengths of the axes are d; = /\jc in the direction of e;; j = 1,2,--- ,p.

3.1.2 Further Properties of the Multivariate Normal Density
Let X ~ Np(u,X), then

1. Linear combinations of the components of X are also normally distributed. That is, if
X ~ Np(p,X), then @’ X = a; X7 + asXo + -+ + a, X, will have a univariate normal
distribution. That is, ' X ~ N (a'u,a'Xa).

More specifically, the marginal distribution of any component X; of X is N (p;,055).
Let @’ = (0,0,---, 1 ,---,0) and pp = (p1, 2, s 455+, itp)’. Then o/ X =
jthposition

Xj ~ Nnj, 0jj)-

Similarly, if X ~ N,(p,X), the ¢ linear combinations

a11 X1+ apXo + - +ap X,

a1 X1+ a2Xo+ -+ a9, X
. PP~ Ny (Ap, AS A,

CquXl + aq2X2 + -+ aqup

2. All subsets of the components of X have a (multivariate) normal distribution. That is,

X
if X ~ Np(p,X), then | — —qx—l— with have a multivariate normal distribution with
X(p-g)x1
Hgx1 Etlzlw | Z];QX(pfq)
p=|—-————|andX=|—-——— | - ———
H(p—q)x1 2%;41)%1 | 2%zgfq)X(zufq)

3. Zero covariance implies that the corresponding components are independently distributed
(for normal distribution only). X; and X5 are independent if and only if cov(X7, X3) =
0. That iS, if COV(Xl,XQ) = 0, f(l‘l,l‘g) = f(l‘l)f(xg)

4. The conditional distributions of the components are (multivariate) normal. f(x|zy) =

2
T1,T2 012 o
M ~N | pr 4+ — (22 — p2), 011 — -2
f(iEz) 022 022

3.2 Sampling from the Multivariate Normal Distribution

3.2.1 The Multivariate Normal Likelihood

Recall if X ~ N,(p,X), then the multivariate normal density is given by

L exp (- p)S N — )

fl@)=—F—Te¢€
@) (2m)2 |32 2
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Let X;;¢=1,2,--- ,nrepresent a (vector) random sample from N, (g, X). Since X1, Xo,--- , X,
are mutually independent and each is distributed as N,(p, X), the joint distribution is

n

n
1 _
Flr, @, @l T) = [[ F@) = [[ —— exp [—2< = )'S 1<wz—u>]
i=1 o1 (2m)z (X2
1 n
Is—1
= e €XP | —5 ) (@i — )BT (i —p
em ¥ |33 [ PR
This expression as a function of g and 3 for a fixed set of observations x1, xo, - - , x, is called

likelihood function denoted by ¢(u, X|x1, 2, - ,x,). That is,

1 1 &
O(p, e, o, -+, ®p) = 55— XD [— D (@i — )= (@ — u)] :

[ —)
(277) 2 ‘2’2 2 i=1

To get the ML estimate of pu and 3, ;Llogﬁ = 0 and a(;logﬁ = 0. Thus, it results

1 ¢ . 1
1= — P = T d = — i — T i — ) = S_
fr= ;21 x;=x and ¥ - ;:1(:1: z)(x; — )

n—1

n

3.2.2 The Sampling Distribution of X and S
e Univariate case: X;;i=1,2,---,n be a random sample from N(u,c?). Then,

= 1
a. X ~ N(u,—c?).
n

(n —1)52

b,

~x%(n —1) where n > 1 and o2 > 0.
o

_ I 1
c. If n > 1, then X and S are independent where X = — g X;and S = 7 E (X;—
n n—
=1 i=1

X)2.

e Multivariate case: Let X;; ¢ = 1,2,---,n be a random sample of (vectors) from
Ny(p,3). Then,

= 1
a. X ~ Np(p, —3).
n
b. (n — 1)S is distributed as Wishart distribution (matrix) with n — 1 degrees of
freedom.

c. X and S are independent.

The sampling distribution of the sample covariance matrix is called the Wishart distribution.
It is defined as the sum of independent products of multivariate normal random vectors, Z;.

— Wy (-|X) Wishart distribution with n degrees of freedom = distribution of ) Z;Z]. (Note
i=1

n
for univariate distribution, > Z2 ~ x?(n).
i=1
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3.2.3 Large Sample Behaviour of X and S
e Recall if X ~ N(p, %) with [X] > 0, then
— (X —p) ~N,(0,%)
~ Z=3"3(X — p) ~ Np(0,1,)
- Z2'Z=(X-p)E (X -—p= 212—1—2224--”4-25 ~ x%(p).

e Let X;;i=1,2,---,n be a random sample from any distribution with mean g and
finite covariance X. Then,

= 1
— (X — p) ~ N,(0, EE) for large n.
— V(X — p) ~ N,y(0,X) for large n.
— Since for large n, S is close to ¥ with high probability, /n(X — p) ~ N, (0, S).
~ Z = \a%":(X — p) ~ N, (0, )
— 2'Z =n(X — p)E"HX — p) ~ x?(p) for large n — p.

27



Chapter 4

Inference about a Mean Vector

One of the central messages of multivariate analysis is that the p correlated variables must
be analysed jointly.

4.1 The Plausibility of py as a Value for a Normal Population
Mean u

Univariate case:

Suppose a random sample of Xy, Xo, ---, X, is drawn from a normal population with mean
p and variance o2 (in practice o2 is unknown, s is used instead). Given Hy : u = pg versus

Hi : o # pg. The test statistic is
X — o
s/v/n

The null hypothesis is rejected if |¢] is large. Rejecting Hy when [¢] is large is equivalent to
rejecting Hy if ¢? is large. Hence, the test statistic becomes

= <X/‘¢;i“) — (X o) M (X o)

t =

~t(n—1).

— n(X — po)(s?) " (X — o) ~ £2(n = 1) = F(L,n— 1)

Given a sample of n observations x1, xa, - - -, x,, Hg should be rejected, that pg is a plausible
value for pu, if the observed

T — o
s/v/n

exceeds t, jo(n—1) or if the observed t? = n(Z —puo)[s*] 1 (Z— po) > ti/Q(n— 1) =F,(1,n—1).

| =

Multivariate case:

Let X1, X2, ---, X, be a random sample from N,(p,X). The hypothesis to be tested is
Hop = po versus Hy : p # pg. To test it, the squared statistical distance from X to pg is
considered. Thus, the test statistic which is analog of the univariate t? is

n—1)p

72 = (X — o) $7(X — o) ~ L )
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where "
_ 1 _ _
X = ZX and § = —— Z(Xi - X)(X; - X).

i=1 =1

This test statistic is called Hotelling’s T? statistic. If T2 is "too large”, i.e., X is "too far”

from pg, then Hy : o = pg is rejected which means pg is not a plausible value for .

If n independent observation vectors @y, ®o, ---, ®, are collected, then Hy : p = pg is

(n—1)p

rejected if T? = n(& — po)'S™H& — o) > ¢* where ¢* = — Fuy(p,n—p).

Example 4.1. Laboratory analysis of two different nutrients (A and B) for each of a sample
of size n = 10 of the same food (in mg per 100 gram portion) revealed the following.

A | 317 345 373 1.82 439 291 354 4.09 285 2.05
B|345 235 5.09 388 3.64 463 288 398 3.74 4.36

Does it appear that the sample come from a food with mean nutrient amount vector gy =
(3,5)'7

Summary statistics: p =2, n =10

1 n
zjzn;xij;jzw

10

1 1

= =15 § T T0(3'17+ 345+ - +2.05) = 3.20
=1

10
1 1
== 1 S iz = 15(345 + 235+ -+ 4.36) = 3.80
=1

Thus, the sample mean vector is: & = [ 328 ] .
1 n
Sik = 7 Z;(ﬂ«“z'j — &) (@i — Tg); J k=1,2
1=
1 10 1 10
_ R~ VA — o — 702 —
=S =157 ;(!Eu T1)° = 0.678 and sgp = 0-1 ;(%2 T9)* = 0.645
1 10
= S12 = 10-1 Z(:cll — fl)(l‘iz - fg) = —0.109
i=1

Thus, the sample covariance matrix is:

S — 0.678 —0.109 g1 _ 1.517 0.257
| =0.109  0.645 ~ | 0.257 1.594

1. Hypothesis: Hoilt:[?]VSHlill?é[g]-
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=g pn—p) = 20212

-~ I 2,10 — 2) = 2.25(4.459) =
n—p 10 — 2 0.05( ) ) ( )

2. Critical value: ¢* =
10.033.

3. Test statistic: T? = n(x — po)'S™H& — po)

2o 320-37[ 1517 0257 ][ 3203
~ | 380—5 | [ 0257 1594 | | 3.80—5

1.517 0.257 0.2
—10[02 —12] { 0.257 1.594 ] [ ~1.2 }

= 22.322

4. Since T? = 22.322 > ¢* = 10.033, Hj is rejected. Thus, the sample does not appear to
come from a food with mean nutrient [3,5]" at 5% level of significance.

4.2 Confidence Region for the Mean Vector u

Ordinarily, instead of testing Hg : u = po, it is preferable to find regions of p values that are
plausible in the light of the observed data.

Univariate case:

For a random sample of n observations x1, xo, - -+, T, is drawn from a normal population
with mean z and variance o2, the (1 — a)100% confidence interval for p is given by

X

T — p
s/v/n

< ta/?(n - 1)

which is equivalent to
2

¢ = E T (e = () o - ) < Falln = 1),

Multivariate case:

A (1 — @)100% confidence region for the p dimensional multivariate normal population with
mean p is given by

_ _1,- n—1
n(@—p)S™ & —p) < (n_p)pFa(p,n —p).
The confidence region is an ellipsoid centered at the sample mean vector & = (z1,Z2,- - , Zp)'.
This implies, the boundary of the ellipsoid is
. . i —DLp
WS @ - ) = S where ¢ = 2=V p 0 )
(m p’) (m p’) n where ¢ (n o p) Ot(pv n p)

Beginning at the center &, the half lengths of the axes are given by

N:“Aj%: \/Aija(p,n—p)

in the direction of e; which is the normalized eigenvector corresponding to the eigenvalue A;;
j=12--- pofS.
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Example 4.2. Recall example 4.1. The 95% confidence region for g = (1, u2)’ is given by

(&S @<t

3.20—py |'[ 1517 0257 | [ 3.20 — 1y _ 10033
3.80 —pp | | 0.257 1.594 | | 3.80 — o 10

This confidence region for g = (u1, u2)” will be an equation of ellipse like the form
Gz — m)? + ba(wz — p2)? + a1 — ) (22 — p2) < La.

For all points inside the ellipse (satisfying the equation), Hy will not be rejected. For example,
we can easily check that pu = (3,5)" does not lie in the region.

Let us plot of the confidence region. First, let us find the eigenvalues of S. That is,

0.678 — X  —0.109

[S=M|=0=1"0100 o0645-x |~

0

This gives the quadratic equation A% — 1.323\ + 0.425 = 0. Hence, the eigenvalues are
)\1 =0.774 and )\2 = 0.550.

Second, let us obtain the orientations (eigenvectors) associated with both eigenvalues. That
iS, Sa:j = )\j.’l?j; j = 1,2

For )\1 =0.774: Sibl = )\1331

N [ 0.678 —0.109 ] [ 11 ] — 0774 [ 11 } N [ 1.00 }

—0.109 0.645 21 1 —0.88
. . . - 0.751
Thus, the orientation of the major axis is: e; = 0661 |-

For )\2 = 0.550: 5:132 = )\15(32

N [ 0.678 —0.109 ] [ 19 } 0550 [ 19 ] gy — { 1.000 ]

—0.109  0.645 929 T99 1.174
Thus, the orientation of the minor axis is: e; = [ gggf } .

The half lengths of the major and minor axes are y/A\jc = /0.774(1.0033) = 0.881 and
VA2c = 1/0.550(1.0033) = 0.743, respectively.

Beginning at & = [3.20, 3.80)', the plot is as follows.

Inserttheplothere
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4.3 Simultaneous Confidence Statements

Once the null hypothesis Hy : g = pg is rejected, then the component which is responsible
for rejection has to be determined.

It would be erroneous to carry out univariate ¢ tests for this purpose because the number
of tests and the correlation among the responses would lead to a greatly different values of
significance level («) than the one chosen for the critical value of the ¢ distribution. For
example, let X ~ Ng(u,X) and assume each component mean equals to a specified value.
There would be p = 6 univariate ¢t-tests. Let a = 0.05. Then, the probability of not rejecting
the hypothesis of no difference from the specified value in each case would be 1 —0.05 = 0.95.
If the tests are independent of each other, the probability of not rejecting Hy in all of the
6 cases is (0.95)(0.95)---(0.95) = (0.95)% = 0.7351. The probability of rejecting at least
one hypothesis of no difference from the specified value is 1 — 0.7351 = 0.2649 = « for a
univariate t-test. This means that type I error is committed 26% of the time in testing all
the 6 univariate tests. In general, the probability of committing type I error increases as the
number of components is larger.

Simultaneous confidence statements are proposed to avoid such drawback of univariate confidence
intervals by using linear combinations of the components. Recall, if X follows an N,(u,X),
then the linear combination of the components of X, a’X = a1 X1 + agXs + - - - 4+ a, X, has
also a normal distribution with mean a’p and variance a’Xa, that is, a’ X ~ N (a'u,a'Xa).
Consequently, a’ X ~ N(a'u,a’Sa/n).

In constructing the simultaneous confidence statements, all the separate confidence intervals
hold simultaneously a specified high confidence level (low significance level). That is, a
simultaneous confidence interval uses linear combination of the components of g which is
given by a set of a’p values such that the observed #? is relatively small for all choices of a.

Then, a (1 — a)100% simultaneous confidence interval for a’p is

adZT—ap
<Ve = (a'z £ Ve /a'Sa/n)

va'Sa/n

where @' is an estimate of a’p, and a’Sa/n is an estimate of cov(a').

(a’/:i — a//“l’)Z *
a'Sa/n ~ ¢

In particular, if @’ = (0,0,-- -, 1 ,---,0), then the confidence interval for a’p = p; is

jth position

<33j + Ver STJLJ> where ¢* = <T;)pFa(p,n —p).

Example 4.3. Consider again example 4.1. Find the 95% confidence interval for mean
nutrient A and B. The sample mean vector and sample variance-covariance matrix, respectively,

were
__[320] g [ 0678 —0.109
~ | 3.80 ~ | 0109  0.645 |
(10— 1)2

Also, the critical value for the Hotelling’s T2 was ¢* = Fy.05(2,10 — 2) = 10.033.

10 -2
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A 95% simultaneous confidence interval interval for p; is

(g—cl Ve ‘2”) - (3.20¢ V10.033 0‘16078> — (2.375,4.025).

Similarly, a 95% simultaneous confidence interval interval for g is

n 10

0.645
<:32 +Ver 822) = (3.80 +1/10.033 ) = (2.995,4.650).

Note that pup; = 3 is found inside in the confidence interval for p; while pgo = 5 is found
outside the confidence interval for pe. Hence, the second component (nutrient B) is responsible
for the rejection of Hp : = (3,5)".

4.4 The Bonferroni Method of Multiple Comparisons

The Bonferroni confidence interval makes an adjustment on the univariate t-test critical value,
not to increase type I error, by considering the total number of confidence intervals required.
The (1 — «)100% Bonferroni confidence interval for p; is

(fj +to/0p(n — 1)\/?>

where p is the number of confidence intervals required.
Example 4.4. Find the Bonferroni confidence interval based on the data given in example 4.1.

t&(lo — 1) = t0.0125(9) = 3.111.

2(2)

0.678 0.645
e (3.2 +3.111 10) = (2.39,4.01) and ps : (3.8i3.111 10) = (3.01,4.59)

Again using the Bonferroni confidence interval, the second component (nutrient B) is responsible
for the rejection of Hp : = (3,5)".

4.5 Likelihood-Ratio Test

Likelihood-ratio test is a general principle for constructing test procedures. It is the ratio of
the restricted likelihood function to the unrestricted likelihood function.

Recall for a random sample X;; i =1,2,--- ,n from an N,(p, X), the likelihood function is:

n

exp | ~5 D@~ 'S (wi )

i=1

€ Z :W
B T

n

- 1
Also recall the ML estimate of p is ft = @ and that of 3 is 3 = — Z(ml —z)(z; — @)
n
i=1
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The exponent of the likelihood function can be

n n

L YS e — ) — tr o VS (e
;(wz ) (i —p) =t ;(;1:)2 ,(gp; 1)
=tr {Z >Ny — p)(z; — u)/} as tr(AB) = tr(BA)
i=1

=tr {E_l Z(wl — p)(x; — u)'} .

i=1
Thus,
1
t

- exp |—= tr{ X1 ; x; — p)(x; — )
E(“’E)_(%)%IEI% p[ 5 {2 ;(z (i u)}

The (unrestricted) maximum of the likelihood function is

o 1 1 el e
0(f1,2) = ————=exp | —= tr{ B4 z; —)(x; —x)
L T AR TG YR
1 1 PPN
= o €Xp | —= tr (nz_lﬁ)]
@em=xz L 2
1 1
= e XD —ntrI]
e FE P2
1 [ 1 }
= = €Xp |—-np| .
erTEE L2

When the null hypothesis holds, there is no need of searching for g because it is given as
fixed. Hence, under Hy : pt = pg, the restricted likelihood function is

1 1 v
(1o, X0) = WGXP 3 tr{zolz(wi_ﬂo)(mi_ﬂo)/}]
i=1

@2m) 7 [So7 |
1 1 .
= ———exp |—= tr (nX, X }
@n)F (%3 | 2 (n5" %)
1 [ 1
= ———F=CeXp|—=n tr I }
2m) 7T |%)7 L 2 r)

1 1 ]
- n n eXp _7np *
(2m)7 [Sol> L 2

Therefore, the likelihood-ratio is

_ Upo, ) _ |37
0, %) 2o
p)
#A%:u.
X0
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This likelihood-ratio test statistic A= is called Wilks’ Lambda. The null hypothesis Hy : p =
1o should be rejected if the value of A is too small, that is, if
DIl

A=
|20

< Cq

where ¢, is the lower (100 percentile of the distribution of A. But,

2 -1
A3:[1+ ! ]
n—1

n—1p

where T? ~ ( F(p,n—p). Rejecting Hy for small values of A7 is equivalent to rejecting
n —

Hy for large values of T2,

4.6 Large Sample Inference about u

When the sample size is large, tests of hypothesis and confidence intervals can be constructed
without the assumption of a normal population.

Univariate case:

Suppose a random sample of large size n is drawn from any population with mean g and
variance o2. The test statistic for testing Hp : u = pg is

_ X — po
o/v/n
Rejecting Hy when |Z| is large is equivalent to rejecting Hy if Z2 is large. That is,

7 - (f%) — (X i) m (X — o)

= n(X = po)(0?) (X — o) ~ x*(1)

Z

~ N(0,1).

If o is unknown, s is used instead.
Multivariate case:

All large sample multivariate inferences are based on the x? distribution. When n —p is large,

(n—1)p

Hy : p = po will be rejected if T? = n(Z— o)’ S~ (Z — o) > x2(p) since Fu(p,n—p)
—D

and x2(p) are approximately equal for large sample size.

The (1 — @)100% simultaneous and Bonferroni confidence intervals for a’p are given by

(@' + /x2(p)/a'Sa/n) and (' + z,/9,+/a'Sa/n), respectively.
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Chapter 5

Comparison of Several Multivariate
Means

5.1 Dependent Samples

5.1.1 Paired Comparison

In paired comparison, the presence and absence of a single treatment or two treatments are
compared by assigning both treatments to the same (e.g., persons) or identical (e.g., plots)
experimental units. The paired responses are then analysed by computing their differences.

Univariate case:

Let X;; and X;o denote the responses to treatment I (response before treatment) and to
treatment II (after treatment) for the i*"; i = 1,2,--- ,n trial (experimental unit). That is,
(X1, X;2) are responses recorded on the ith pair of like units. The differential effects of the
treatments is D; = X;1 — X0, 0 =1,2,--- ,n.

Let the differences D;; 7 = 1,2,--- ,n represent independent observations from N (,ud,ag).

Thus, D ~ N (pa,02%/n). The hypothesis to be tested is Ho : g = 0 versus Hy : pg # 0.
Then, the test statistic is ~

D —pq

sda/v/n

_ 1 & 1 & _
where D = — g D; and s4 = —7 E (D; — D)2.
n n —
i=1 =1

~t(n—1)

Consequently, Ho should be rejected if the observed [t| >t /9(n — 1).
Multivariate case:

Given p responses, 2 treatments and n experimental units. Let X1;; denote the 4t response
of the it" unit to treatment I (response before treatment) and let X»;; denote the 4t response
of the i*" unit to treatment II (response after treatment).
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Pre-treatment matrix Post-treatment matrix
Varl Var2 ... Varp Var1l Var2 ... Varp
X1 X2 oo X Xo11 Xo1z -+ Xoyp
X121 X1z - Xigp Xoo1  Xoog -+ Xoagp
Xlnl Xln2 e Xlnp X2n1 X2n2 A inp

The analysis is performed on the differences (before treatment - after treatment) of the type
Dij = D1ij — Dojj, j =1,2,--- ,p;i=1,2,--- ,n.

Let the differences Dy, D>, - - -, D, represent independent observation vectors from Np(ud, ).
Thus, D ~ Np(pa, X4/n). The hypothesis of interest is Hy : pg = 0 (no treatment effect for
all p components) versus Hj : g # 0. Then the test statistic is

72 = (D - 1) () (D — o)~ L F (o~ p)
where D = liD- dS;= Ly D, - D)(D; - D)
= L Diand 8= > (D~ DD, - D).
Given the observed differences d; = (di1, di2, -+ ,dip); 1 =1,2,--- ,n, Hy : pg = 0 is rejected
if the observed

- - —1
T? = nd'(Sy)~'d > uFoz(p,n —p)
n—p
-1 & 1 n _ _
where d = — Zdi and Sy = —— ' (d; — d)(d; — d)'.
=1 i=1
dy Sdydi  Sdids **c Sdid,
_ da Sdyd;  Sdady " Sdod
Note that d = ) and Sy = 2 ' 2 : ] 2 P
dy Sdydi  Sdyds *c Sdyd,

A (1-a)100% confidence region for g is n(d—pq) (Sq)~(d— pg) < ¢ which is an ellipsoid

passing through d. To plot the confidence ellipsoid, the sample covariance matrix of the

sample differences, Sy, is used.

A (1 — «)100% simultaneous confidence interval for a linear combination a’p, is given by
(a’di Very/ a’Sda/n>

where a’d is an estimate of a’py, and a’Sza/n is an estimate of cov(a'd).

Particularly, a (1—a)100% simultaneous confidence interval for the individual mean differences

pd;’s are given by
—_ Sd.d.
(dj:l:VC* %)7]:1’277]7
V n
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Also, a (1 — a)100% Bonferroni confidence interval for the individual mean differences j14,’s
are given by

— Sd.d: .
<dj :l:ta/Zp(n - 1) 7;]) )= 1727' D

Example 5.1. It is felt that three drugs (X, X2 and X3) may lead to changes in the level
of a certain biochemical compound found in the brain. Thirty mice of the same stain were
randomly divided into three groups and received the drugs. The amount of the compound
(in micrograms per gram of brain tissue) is recorded before and after the treatments. The
responses are in given in the following table. Test the hypothesis of no treatment effect at
5% level of significance.

Before treatment After treatment

Tl T2 T143 T2i1 22 T23
1.21 0.61 0.70 1.26 0.50 0.81
0.92 0.43 0.71 1.07 0.39 0.69
0.80 0.35 0.71 1.33 0.24 0.70
0.85 0.48 0.68 1.39 0.37 0.72
0.98 0.42 0.71 1.38 042 0.71
1.15 0.52 0.72 0.98 0.49 0.70
1.10 0.50 0.75 1.41 0.41 0.70
1.02 0.53 0.70 1.30 0.47 0.67
1.18 0.45 0.70 1.22 0.29 0.68
1.09 0.40 0.69 1.00 0.30 0.70

The necessary calculations are obtained as follows. Here d; = di; — Jj. Also the last row is
the sum.

. j i *2 *2 *2 P *  Jx * Ik
dll dl? d13 dil di? di3 dildiQ dildiS diQdi?)

-0.050 0.110 -0.110 0.023716 0.000841 0.011881  0.004466 -0.016786 -0.003161
-0.150  0.040 0.020 0.002916 0.001681 0.000441 -0.002214 0.001134 -0.000861
-0.530 0.110 0.010 0.106276 0.000841 0.000121 -0.009454 -0.003586  0.000319
-0.540 0.110 -0.040 0.112896 0.000841 0.001521 -0.009744 0.013104 -0.001131
-0.400 0.000 0.000 0.038416 0.006561 0.000001  0.015876 -0.000196 -0.000081
0.170 0.030 0.020 0.139876 0.002601 0.000441 -0.019074 0.007854 -0.001071
-0.310 0.090 0.050 0.011236 0.000081 0.002601 -0.000954 -0.005406  0.000459
-0.280 0.060 0.030 0.005776 0.000441 0.000961  0.001596 -0.002356 -0.000651
-0.040 0.160 0.020 0.026896 0.006241 0.000441 0.012956  0.003444  0.001659
0.090 0.100 -0.010 0.086436 0.000361 0.000081  0.005586 -0.002646 -0.000171

-2.040 0.810 -0.010 0.554440 0.020490 0.018490 -0.000960 -0.005440 -0.004690

1 n 1 10
dj=—> dij=15> diji j=1,2,3
i=1 =1
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- 1 1
di=— djy = —(—0.204) = —0.204
= d; 10;“ 10(00) 0.20
1 & 1
=dy=— Y djs=-—(0.810) = 0.081
2 101,222 1o< )

1 1
=d3=—> dig=—(-0.01) = —0.001

10 P 10
B —0.204
=d= 0.081
—0.001
1 n B B 1 10 B B
Sdyd = —7 > (dij — dj)(dig, — dy) = 10-1 > (dij — dj)(diw — di); b =1,2,3
=1 =1

10
1 o 1
= sa = g ;(dil — 1)’ = 5(0.55444) = 0.06160
10
= Sdady = 1Z(dig —dy)? = 1(0.02049) = 0.00228
202 9 — 9
10
= Sdzds = 1Z(dﬁ —d3)* = 1(0.01849) = 0.00205
343 9 — 9
1 Qo ) B 1
= saa, = 5 9 (din = d)(di2 — dz) = 5(~0.00096) = ~0.00011
=1
1 Qo ) B 1
= Sads = 5 > (din — dv)(dis — ds) = 5 (~0-00544) = ~0.00060
=1
1 1
= Sdydy = ¢ D _(din — do)(di3 — d3) = 5 (~0-00469) = ~0.00052

) i=1
0.06160 —0.00011 —0.00060 16.28866 1.98818 5.27173
Sq= | —0.00011  0.00228 —0.00052 | = Sd_l = 1.98818 465.77088 118.72867
—0.00060 —0.00052  0.00205 5.27173 118.72867 519.46436

The hypothesis to be tested is Hy : g =0 vs Hy : pg # 0.

T? = nd’(Sd)_ld

/

—0.204 16.28866 1.98818 5.27173 —0.204
=T?=10 0.081 1.98818 465.77088 118.72867 0.081 | = 36.515
—0.001 5.27173 118.72867 519.46436 —0.001
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(10 — 1)3

-1
uFa(p, n —p) = WFO_05(3, 10 — 3) = 16.779. There is
—p _

a significant treatment effect at 5% level of significance.

The critical value is ¢* =

The next question is which of the three drugs (Xi, X2 or X3) leads to changes in the level
of the biochemical compound found in the brain? To answer this question, the simultaneous
confidence intervals for the individual mean differences p4; need to be constructed, which is

given by
_ Sd.d.:
(dji\/c*,/df””) L j=1,2,3
n

Hence, the 95% confidence intervals are:

) 0.06160
La, - <dli\/c>* Sd;dl>:<—0.204i\/16.779 0 ):(—0.5255,0.1175)

i 0.00228
fa, <d2j: Ve Sd;“) - (0.081i\/16.779 o ) = (0.0191, 0.1429)

_ , 0.00205
Ly - (dgi\/E* ‘?‘):(—0.001i\/16.779 0 )z(—0.0596,0.0576)

The confidence interval for p4, does not include zero. Thus, Hp : pg = 0 was rejected due
to the second component (X5). In other words, it is the second drug (X2) that led to a
significant change in the level of the biochemical compound found in the brain at 5% level of
significance.

5.1.2 A Repeated Measures Design for Comparing Treatments

A repeated measures design is another generalization of the univariate ¢ statistic in which ¢
treatments are compared with respect to a single response measured from the same (identical)
sampling units over time or space. Each experimental unit receives each treatment once over
successive period of time. The name repeated measures stems from the fact that all treatments
are administered to each unit.

Let X;; be the response of the it"; i = 1,2,--- ,n unit to the kt"; k =1,2,--- , ¢ treatment.
Item Treatment 1 Treatment 2 --- Treatment ¢
1 X1 X2 s qu X{
2 X21 X22 cee qu Xé
n Xn1 Xn2 cee an X{]
The hypothesis of interest is whether pu; = pp = --- = pg (no treatment effect). For

comparative purposes, contrasts of the components of p = F(X;) are considered. These
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could be ) ) _ o }
11— 2 1 -1 0 O 0 O 151
M1 — us3 1 0 -1 0 - 0 O 153
M1 — U4 — 1 0 O -1 --- 0 0 U3 — Au
| p1 — pg | | 1 0 O 0 0 -1 ] | pg |
~ N——
(g—1)x1 (g—1)xq gx1
or ~ _ ~ o _
H1 — 2 r-r 0o 0 -+ 0 O M1
P2 — (13 o 1 -1 0--0 0 12
M3 — U4 = 0 0 1 -1 -+ 0 0 U3 = Bu
| Hg—1 — Hq | 0 0 0 0 -+ 1 =1 ]| pq |
~ N——
(g—1)x1 (g—1)xq gx1

Since each row is a contrast and the ¢ — 1 rows are linearly independent, both A and B are
contrast matrices. If Au = Bp = 0, then pu; = o = --- = pg. Hence, the hypothesis of no
difference in treatments (equal treatment means) is Ap = 0 for any choice of contrast matrix
A.

Consider an N;(p, X) population. If A is a contrast matrix, then AX ~ N,_;(Ap, AL A").
Hence, AX ~ N,_1(Ap, ASA'/n).

Therefore, for testing Hy : A = 0 vs Hy : A # 0, the T? test statistic, which does not
depend on the particular choice of A, is

(n—-D(g-1)
n—(q—1)
As usual, Hy : A = 0 is rejected if the observed T? = n(Az) (ASA') "1 (AZ) > ¢* where

C :mFa[q_lan_(q_l)]'

The (1 — «)100% simultaneous confidence interval for a single contrast a’p for any contrast

vector a of interest are
(d'& 4+ Vc*\/a'Sa/n)

where @’ is an estimate of a’u, and a’Sa/n is an estimate of cov(a').

T? =n(AX — Ap)' (ASA) 1 (AX — Ap) ~ Flg—1,n—(¢—1)].

Particularly, the confidence interval for the difference of the j** and k' treatment means,
[j — [k, is obtained by letting a’ = (0,--- ,0, 1 ,0,---,0, —1 ,0,---,0):

jtP position kth position
Sii — 28:k + Skk
= = JJ J .o
[(:Iij—:vk)iw*\/ - ; J# k.
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Also, a (1 — a)100% Bonferroni confidence interval for the difference in treatment means
— g are given by

- Sd;d; .
(dﬂita/[Q(q—l)](n_l) 72])7]:1727717

Example 5.2. A researcher conducted three indices measuring severity of heart attacks. The
values of the indices for n = 40 heart-attack patients arriving at a hospital emergency room
produced the following summary statistics.

46.1 101.3 63.0 71.0
= | 573 | and § = 63.0 80.2 55.6
50.4 71.0 55.6 974

Test the equality of the mean indices and judge the differences in pairs of mean indices.

Since there are ¢ = 3 treatments, let A = [ i _(1) _(1) ] . Then the hypothesis to be tested
is
0
:Apu=0= Hj =10
0
Ap, 75 0= H;: 0

The test statistic is 72 = n(Az) (ASA’)~

—-11.2
—4.3

95.5 22.9 0.02162 —0.00873

- n—=1 _
Az = [ 22.9 56.7 ] = (ASA)T = [ —0.00873  0.02116

| asa-|

TP=[ 112 43 ] { 0.02162 —0.00873 ] [ —11.2

—0.00873  0.02116 —4.3

) _(o-1)@B-1)
T e P ey

Hence, Hy : Ap = 0 is rejected. The mean indices are not all equal.

] =90.49

o_(=1Dg—1) Fos[3 — 1,40 — (3 — 1)] = 6.66

The 95% simultaneous confidence interval for p; — py, is

[( ) i\/»\/ 253k+5kk

I #k
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_ S11 — 2812 + S22
1 — 2 : (a:l—xg):t\/c?\/ -

—11.2+ m\/ml-?’ - 2(2’3-0) +80.2

= (—14.23986, —8.16014)

-2
p— s | (T —xs)i\/?*\/sn ';13+833

101.3 — 2(71. A4
—4.3i\/6.66\/ 013 (ZO 0) + 97

= (—7.37255, —1.22745)

— 2893 + §a-
2 — H3 (Ub’z—»’L‘s)i\/(?*\/s22 ';25+853

.2 —2(55. 4
6.9 = \/6.66\/80 (Z% 6) + 97

= (3.57500, 10.22500)

All the intervals do not contain zero. Thus, all mean indices are significantly different from
each other (ug > pz > p1).

5.2 Independent Samples

5.2.1 Comparing Mean Vectors from Two Populations
Univariate case:

o X1, X1z, -+, Xiny ~ N (p1,07)

o XQ]., X227 T X2n2 NN(MZ,O’%)

e The two samples are independent.

The hypothesis to be tested is Hg : p1 = pg vs Hy : g1 # p1. Assuming U% = O'%, the test

statistic is _ _
(X1 — Xa) — (1 — p2)

1 1)
7’L71+’I’L72 Spooled

(ng —1)s? + (ng — 1)
n1 + ne — 2

2 —
where ;014 =

2
%2, Reject Hy if the observed [t| > t,/9(n1 + n2 — 2).
Multivariate case:

o X1, Xig, -+, Xip, ~Np(p1,%0)
o Xoi, Xog, -+, Xopy, ~ Np(p2, ).

o X1, X2, -+, Xip, are independent of X1, X2, -+, Xop,.

The data layout,
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Population 1 Population 2
X Xug -0 Xy = Xy Xonn  Xorz - Xop  — Xy
Xigt Xizz -0 Xigp = X7 Xoot Xoop -+ Xoypy  — X
X1 Xim2 0 Xy 2 X{nl Kongt Xomg2 -+ Xongp — Xénz

If nq and ng are small, then both populations should be multivariate normal and they should
have the same covariance matrix (i.e., 31 = ¥j3). The second assumption is much stronger
than its univariate counterpart because the several pairs of variances and covariances must
be nearly equal.

ni

_ _ 1
X1;i—X1)(X1;—X1) and Sy = Xoi—
;( 1i—X1) (X1 1)" and S> p— ;( 2
X5)(X3; — X2) estimate X. Consequently, both samples can be pooled to estimate the
(n1 — 1)51 + (ng — 1)52

ny+ng — 2

If ¥, =3y = X, then both S; =

m—l

common covariance 3. That is, Spooted = estimates X.

To test Hyp : p1 = po vs Hy M1 #* M2, the squared stati_stical _distance from X; — Xo
to p1 — po is considered. As F(X; — X») :,(“1,_ w2), (X1 — Xo) estimates (p1 - ©2).
Since the two samples are independent, Cov(Xj, X3) = 0. This implies Cov(X; — X3) =

_ - 1 1 1 1 1 1
Cov(X1) + Cov(Xg) = —3¥ + —3 = < + ) 3. Thus, < + ) Spooled €stimates
ni no nq n9 n n2
_ _ 1 1
COV(Xl — X2) = ( + ) 3.
ni no
The test statistic is, therefore,
2 e o (1,1 oo
T° = [(Xl - X2) - (“1 - /1'2)] ?7,71 + 77172 Spooled [(Xl - X2) - (,u’l - IL2)] .
-2
Since T? ~ (1 + 2 )P F(p,n1 +ng —p—1), Hy will be rejected if the observed T? > c*
ny+ng—p—1
-2
where ¢* = (m +7ns = 2)p Fy(p,n1+ng—p—1).

ny+neg—p—1
A (1 — «@)100% confidence region for py — po is given by

o 11 o )
(@~ 22~ (= )] | (4 ) S| (@1~ 22) = (1 — )] <
niy no
Lo . o o 1 1y .
which is an ellipsoid centered at (€1 —&2). The boundary of the ellipsoidisc¢ = | — + — | ¢™.
niy no
1 1
The half lengths of the axes are /\; < + ) c*; j=1,2,---,p in the direction of e;
niy n9

which is the normalized eigenvector associated with the eigenvalue A; of Spyoied-

A (1 — «)100% simultaneous confidence interval for a’(p1 — po) is

1 1
[a'(wl — &9) £V C*\/( + ) a/Spooleda] .
ni ng
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If o/ = (0,0,"' , 1 R ,0), a'(ul — /.1,2) = W15 — M2y, a’(:Icl — 532) = Z15 — T2j and

4t position
a’Spooled@ = Sjj. Thus, a (1 — a)100% simultaneous confidence interval for p1; — pgj is

[(flj — Tgj) £ ﬁ\/(é + nlz> Sjj]

where s;; is the jth diagonal entry of the pooled covariance matrix, Spooicd-

Example 5.3. Given the following data on academic performance of students (in preparatory
school out of 100 and in university out of 4.00). Test the equality of the population mean
vectors between the two groups.

Female Male
Preparatory University Preparatory University
97 3.40 86 3.90
95 3.45 84 3.75
85 3.50 70 2.25
80 3.05
75 2.80

Summary statistics

Female: & — [ 92.3333 ] and S; — [ 41.3333  0.2500 ]

3.4500 0.2500 0.0025

, 79.0000 43.0000 4.4125
Male: @2 = [ 3.1500 ] nd §z = [ 4.4125 0.4663 ]
42.4444  3.0250 1 0.0764 —0.7415
Spooled = =S led —
3.0250 0.3117 poole —0.7415  10.4048

The observed test statistic is:

TNt
T2 = <n1 + 77,2> (ml — mQ)ISpololed(ml — wg)

1 1\ ! _
_ <+> 13.3333 0.3000 ] [ 0.0764 —0.7415 ] [ 13.3333 ]

3 5 —0.7415 10.4048 0.3000
= 16.0999
. . (6)2 .
Critical value: ¢* = TFO'OE)@’ 5) = 13.8866. Reject Hy : p1 = po.

A (1 — «)100% simultaneous confidence interval for pi; — po; is

[(ﬂ?u — Tg5) + \/;\/(nll + 7112) Sjj]

where s;; is the 4t diagonal entry of the pooled covariance matrix, Spooled-
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For component 1 (preparatory score):

1 1
M1l — fo1 : [(511 —Z91) £ VC*\/< + ) 811]
ni no

1 1
<13.3333 ==Y/ 13.8866\/<3 + 5) 42.4444) = (—4.3967,31.0633)

For component 2 (university score):

1 1
[12 — o2 [(9612 — To) £ VC*\/< + > 822]
ni no

1 1
(0.3000 TV 13.8866\/<3 + 5) 0.3117) = (—1.2194,1.8194)

Both simultaneous confidence intervals contain the value zero indicating that there is no
significant difference in the mean vectors between females and males. But, this is in contradiction
with the test of Hy : 1 = po. The possible reasons may be:

e The multivariate normality of the observation vectors might be violated because of the
small sample sizes.

e The assumption of equality of the covariance matrices (21 = X3) may not hold.

5.2.2 Comparison of Several Multivariate Population Means

Often, more than two populations need to be compared. Random samples are collected from
each of g populations.

Univariate ANOVA:

e Let X1, Xpo, -+, Xpn, be a random sample from an N (g, 02); £=1,2,--- ,g.

e The samples from different populations are independent.

e All populations have a common variance, o2.

The null hypothesis of equality of means Hy : u1 = po = --- = pg. Each population mean
we; £ = 1,2,--- g can be considered as a sum of an overall mean (u) and a component
specific to each population (1), that is, juy = p + 7, where 7, = g — p is the £ population
(treatment) effect. The null hypothesis now becomes Hy : 71 =1 = --- =75, = 0.

Since the response Xp; ~ N (pg,0%), it can be expressed as Xy; = g + eg; = ju+ 74 + ep; where
g
the random error ey; are independent N'(0, o2). A constraint >~ ngty = 0 is imposed to define

(=1
the model parameters uniquely.
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Hence, the analysis of variance is based on the decomposition of each observed value xy;,
xpp =T+ (g — T) + (24 — Zp)
Tpp — T = (a_,‘g —I)+ (33&' — J_,‘g)
(g — %)% = (Zg — £)° + 2(Ze — T) (T — Te) + (we; — Ty)

Taking the summation over ¢,

ne ny Ty
Z(aﬁgi — 5?)2 = ng(fg - CE)Q + 2(5‘@ — i‘) Z(a;gz - fg) + Z(a% — fg)2
=1 =1 =1
Ny T
Since Y (zg — Zp) = D xoi — npZy = 0,
=1 =1
Ny e
Z(:L’gi — i’)2 = ng(l_}g — 1_3)2 + Z(xh - jZ)Q'
=1 i=1

Now taking the summation over /¢,

g mny g ny
22 (e~ ZW T—2)’+) ) (en—0)
(=1 i=1 (=1 i=1
Sscorrected BSS (Sstreatment) WSS (Sécsiduals)

The ANOVA table is

Sources of variation Sum of squares (S5) Degrees of freedom (df)

g
Between Group (Treatment) BSS =Y ny(z, — 7)? g—1
(=1
9
Within Group (Residual) WSS = > 5 (x4 — 4)? n—g
(=11=1
7
Total TSSeor = > > (x4 — 7)? n—1
BSS/(g—1
The null hypothesis Hy is rejected if F' = WXS'S//((i—g)) > Fo(9g — 1,n — g). Rejecting Hy
SS

when F' is 1:01) large is equivalent wit;/;e;ecting Hy if WSS is too large or WSS + 1 is too
large or % too small or BSS + WSS is too small. This is used for a multivariate
generalization.

Multivariate ANOVA - MANOVA:

Population 1: Xlla X12, s 7X1n1

Population 2: X21, XQQ, s ,X2n2
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Population g: X1, Xg2, -+, Xgn,

Let X1, X2, -+, Xeny; £ = 1,2,--+ , g is a random sample of size ny from an N,(pe, X).
The random sample from the different populations are independent.

1 &
The sample mean of the ¢" group is @, = —ngi; { = 1,2,---,g and the overall
Ny <
=1

i<}

1
sample mean is € = —an:ﬁg. Also, the sample covariance matrix of the ¢t group is
n
. =1
S, = . Z(a:g,- — &) (xy; — ®p)'; £ = 1,2,---,9. This implies the pooled covariance
Ny — :
=1
matrix is
(TLl — 1)51 + (nz — 1)52 + o+ (ng — 1)Sg
Spooled = .
n—g
The null hypothesis of equality of means Hy : g1 = po2 = --- = pg. The model is
Xy = p+ 10+ ey where 70 = pp — p = (o1, 72, -+ ,Tep) s the ¢t group (treatment)

g
effect with Znﬁ'g =0 and ey ~ N, (0, azI).
=1

Now to decompose the sum squares, matrix manipulation is used as follows.

(i — ) (s — ) = (B0 — &) + (2 — 20)|[(Z0 — &) + (20 — Z0)]
=@ — ) + (x0; — 2)][(Be — @) + (@0 — T0)']
=@ —2)(2 — 2) + (T — ) (20i — T0)'

+ (0 — 20)(Te — )" + (201 — T0) (T0; — T0)'

When taking the summation over 7, the middle two cross-products become zero vectors. Then,
taking the summation over £ gives

g ne g g ne
NN (o — @)@ —2) =D ne(@e—®) (@ —2) + > Y (Tei — T0) (w0 — Tp)'
(=1 i=1 (=1 (=1 i=1
B w
Therefore, the MANOVA table is
Sources of variation Matrix of SS and cross-products (SSP)  df
g
Between Group (Treatment) B=> nyzy—x)(xy — ) g—1
=1
g e
Within Group (Residual) W =3 > (xy — @) (g — ) n—g
(=1i=1
g_
Total B+W=> > (xss —x)(xs; —x)) n-—1
(=1i=1
g
1
Note that W = Z(W —1)S; = (n — 9)Spooted = Spooied = fW.

(=1
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The null hypothesis is Hy : 71 = 70 = --- = 7, = 0 is to be rejected if

. W]
A= ——
|B + W|

is too small. The statistic A* is known as Wilks’ Lambda. The exact distribution of A* for
special cases is given on the text book on page 303, Table 6.3.

If n is large, Bartlett has shown that
p+g *
~ (=125 toga) ~ Clpla -

Simultaneous Confidence Intervals

If Hy: 7 =7 =--- =74 = 0is rejected, the next task is to identify which groups for which
variable(s) (component(s)) are responsible for rejection. Bonferroni’s approach can be used to
construct simultaneous intervals for the components of the differences (7p — 7%) or (py — px),
¢ # k, which adjusts the significance level to the p(gC2) confidence intervals required.

The (1 — «)100% confidence interval for the linear combination a'(7y — 1) = a’(pe — ) is

11
a'(®g — 1) £ Lo/ fpg(g—1) (N — g)\/ < + ) a’SpooZeda] :

Ty ng

Here7Tf:lJ’f_lJ‘:(T5177—€27”'7T€p),;£:1727"'7g‘ Leta’:(oaoa"'7 1 7"'70)‘
jth position

Thus, the linear combination a’'(1p—7%) = @' (pe—py) = [Lej— ki corresponds to component j.

That is, for component j, (Xp;—Xy;) estimates (¢ — ;). Hence, cov(Xg;— Xy ) is estimated

1 1 1
by (W + nk) sj; where sj; is the 4t diagonal element of Spooled- Since Spooleq = —— W,

Wyj
n—g

555 = where wj; is the 4t diagonal element of W.

Therefore, a (1 — a)100% confidence interval for the difference 7; — 745 is

_ _ 1 1\ w.s

where wj; is the 4t diagonal element of W.

Example 5.4. Given the following observation vectors on two responses collected for three
treatments.

6 5 8 4 7
Treatment 1 70 6 9 9

3 1 2
Treatment 2 3 6 3

2 5 3 2
Treatment 3 3 1 1 3

S
Ne)
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Construct oneway MANOVA and test for treatment effects at 5% significance level.

54 35}

The MANOVA table is

Sources of variation Matrix of SS and cross-products (SSP)  df

36 48
48 84 ] sol=2
18 —13
-13 38
54 35 |

Total B—FW:_35 122 | 12—-1=11

Between Group (Treatment) B = {

Within Group (Residual) W = [ 12-3=9

w515
~ B+W 5363
For p =2 and g = 3, the exact distribution of A*

n—g—1[1—+vVA*
g—1 VA*

A* = 0.096

) ~F[2(g—1),2(n—g—1)]

7 (1= V00%
2\ V0.096

Therefore, Hy : 71 = 70 = 73 = 0 should be rejected.

> = 8.908 and F0.05[4, 16] =3.01

Next for the simultaneous confidence interval a/[pg(g—1)] = 0.004167, t9.004167(n—g) = 3.808.
A (1 — a)100% confidence interval for the difference 7p; — 73 is

_ _ 1 1\ w.r

where w;; is the j'* diagonal element of W.
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For component 1:

. _ _ 1 1 w11
T11 — 721 - [(:1711 xgl) + 3808\/<n1 + n2> 12 — 3]
1 1 18
4+ 3.808\/<5 + 3> o 3] = (0.067,7.933)
_ _ 1 1 w11
— T30 — + 3. T
T11 T31 [(1‘11 $31) 3 808\/<n1 + 7”L3> 12 _ 3]
343808, (L + 1) 2 = (—0.613,6.613)
' 5 4)12-3| °~ 77
1 1 w
To1 — 731 : [(wgl — fgl) + 3808\/(,”2 + 713) 19 1_13]

11\ 18
143, S 4c = (—5.113,3.11
113808\/<3+4> 12_3] (—5.113,3.113)

For component 2:

Tig — T99 : [(51312 — Tgg) £ 3-808\/<n11 + le> 1;]2_23]
4+ 3.808\/@ + ;) 1;? 3
Ti2 — T32 [@12 —T32) 3808\/(1”}1 * 7113) 1;1]2—23]
6+ 3.808\/(; + i) 1;? 3] — (0.751,11.249)
Too — T32 !(1’22 — T3) 3-808\/<n12 + ;) 1;02—23]

1 1) 38
2+3. 42 = (—3.976,7.
3808\/<3+4) 12_3] (—3.976,7.976)

Treatment 1 has significantly larger mean than treatment 2 for component 1. It has also
significantly larger mean than treatment 3 for component 2.

(—1.714,9.714)

o1



